

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Name of the Department: Energy Engineering

Name of the School: Engineering and Technology

Programme Name: Integrated B. Tech. and M. Tech. in Electrical Engineering with specialization in

Energy Engineering

Course Structure Details

Programme Name	:	Integrated B. Tech. and M. Tech. in Electrical Engineering					
		with specialization in Energy Engineering					
Programme Objective (POs)	:	 To develop the Energy Engineering Department into a department of excellence, capable of producing competent Electrical Engineers who can contribute to the advancement of society. The department is dedicated to giving students the knowledge, technical skills, and values that prepare them to excel as engineers and leaders. The department is also committed to inducing a spark in students for life-long learning and to become good citizens. 					
Programme outcome		Engineeringknowledge: Applytheknowledgeofmathematics, scie nce, engineering fundamentals, and an engineering specialization to the esolution of complex engineering problems. PO2 Problemanalysis: Identify, formulate, review research literature, and an alyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. PO3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. PO4 Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					

 $^{
m age}$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

OWVERSITY OF SEC.	Homepage: http://www.cuj.ac.in
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activitieswithan understandingofthe limitations. PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assesssocietal,health,safety,legalandculturalissuesandtheconseque ntresponsibilitiesrelevanttotheprofessionalengineeringpractice. PO7 Environment and sustainability: Understand the impact of the professional engineeringsolutionsinsocietalandenvironmentalcontexts,anddem onstratetheknowledgeof,andneedforsustainable development. PO8 Ethics: Applyethical principles and committoprofessional ethics and responsibilities and normsofthe engineering practice. PO9 Individual and teamwork: Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings. PO10 Communication: Communicate effectively oncomplex engineering activities with the engineering community and with society at large, such has, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear in structions. PO11 Projectmanagement and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and inmultidisciplinary environments. PO12 Lifelong learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong
Duoguamma Cnacifia	learning in the broadest context of technological change.
Programme Specific	: PSO1 Solve and analyse electrical circuits, network systems and signal
Outcome (SPOs)	level electronic circuits. Design and interface a microprocessor/microcontroller/embedded system, programming, measuring and sensing equipment. PSO2 Ability to operate, program and simulate, calibrate and verify the prototypes of various electrical machines, measurement equipment, control system, signal level electronic circuits, power electronics converters, power system equipment, microprocessor

Semester-I

and microcontroller in the laboratory.

Course Code	Title of the Course	Course Type	Credit
PHY03101	Physics	Theory	4
MAT03101	Mathematics-I	Theory	4
EEN07101	Basics Electrical Engineering	Theory	4
EEN07103	Engineering Graphics & Design		2
ENG04101	Communicative English	Theory	3
EEN07105	Basics Electrical Engineering Lab	Laboratory	1
PHY03103	Physics lab	Laboratory	1
HSS04101	Design Thinking	Laboratory	1
	Semester-II	C	G 114
Course Code	Title of the Course	Course Type	Credit
CHM03102	Chemistry	Theory	3
MAT03102	Mathematics-II	Theory	4
MME07102	Biology for Engineers	Theory	3
CSE07102	Programming for Problem Solving	Theory	3
EEN07102	Workshop Manufacturing Practices	Practical	3
HSS04102	Universal Human Values	Theory	3
CHM03104	Chemistry Lab	Laboratory	1
CSE07104	Programming for Problem Solving Lab	Laboratory	2
NSS10102	NSS/NCC	Theory	0
	Semester-III		
Course Code	Title of the Course	Course Type	Credit
MAT07201	Mathematics III	Theory	4
EEN012010	Electrical Machines-I	Theory	3
EEN012030	Signals, Systems and Networks	Theory	3
EEN012050	Analog and Digital Electronics	Theory	3
DCE07201	Engineering Mechanics	Theory	3
EEN012070	Electrical Machines-I Lab	Laboratory	1
DCE01213	Engineering Mechanics Lab	Laboratory	1
EEN012090	Analog and Digital Electronics Lab.	Laboratory	1
DCE10217	Disaster Management	Theory	0
EEN022110	MSC-1: Energy Resources and Utilization	Theory	4

Semester-IV						
Course Code	Title of the Course	Course Type	Credit			
EEN012020	Single Board Computers and IOT	Theory	2			
EEN012040	Linear Control System	Theory	3			
EEN012060	Power Electronics	Theory	3			
EEN012080	Electrical Machines-II	Theory	3			
EEN012100	Electromagnetic Theory	Theory	3			
EEN082120	Open Elective-1:Basics of Renewable Energy Resources	Theory	3			
EEN012140	Single Board Computers and IOT Lab	Laboratory	2			
EEN012160	Control System Lab.	Laboratory	1			
EEN012180	Electrical Machines-II Lab.	Laboratory	1			
EEN012200	Power Electronics Lab.	Laboratory	1			
EEN032220	Environmental Science	Theory	0			
EEN022240	MSC-2: Solar Thermal Technology	Theory	3			
EEN022260	Solar Thermal Technology lab.	Laboratory	1			
	Semester-V					
Course Code	Title of the Course	Course Type	Credit			
EEN013010	Power Systems Analysis	Theory	3			
EEN013030	Digital Signal Processing	Theory	3			
EEN013050	Electrical Drives	Theory	3			
EEN013070	Measurements and Instrumentation	Theory	3			
EEN063090	Engineering Economics	Theory	3			
EEN083110	Open Elective -2: Basics of Solar Energy Engineering	Theory	3			
EEN013130	Measurements & Instrumentation Lab	Laboratory	1			
EEN013150	Advanced Power Electronics and Drives Lab.	Laboratory	1			
EEN043170	Constitution ofIndia/Essence of Indian Traditional Knowledge	Theory	0			
EEN023190	MSC-3: Solar PV Technology	Theory	3			
EEN023210	Solar PV Technology Lab.	Laboratory	1			
	Semester-VI					
Course Code	Title of the Course	Course Type	Credit			
EEN013020	Power Systems Stability Operations and Control	Theory	3			
EEN013040	Microprocessor & Microcontroller	Theory	3			

EEN013060	Advanced Methods in Control Theory	Theory	3
EEN073xx0	Program Elective – 1	Theory	3
EEN073xx0	Program Elective – 2	Theory	3
EEN083080	Open Elective – 3: Basics of Fuel Cell and Hydrogen Energy	Theory	3
EEN013100	Power System Lab	Laboratory	1
EEN013120	Advance Programming Lab	Laboratory	1
EEN053140	Employment Enhancement Course Summer Internship	Internship	2
EEN023160	MSC-4: Energy Storage	Theory	3
EEN023180	Energy storage lab	Laboratory	1
	Semester-VII		
Course Code	Title of the Course	Course Type	Credit
EEN014010	Switchgear & Protection	Theory	4
EEN014030	Advance Power Converters	Theory	4
EEN074xx0	Program Elective – 3	Theory	3
EEN074xx0	Program Elective – 4	Theory	3
XXXXXX	Open Elective –4	Theory	3
EEN014070	Digital Signal Processing lab	Laboratory	1
EEN054090	Project-1 (Project work, seminar and internship inindustry or at appropriatework place)	Project/ Internship	5
EEN024110	MSC-5: Energy Management	Theory	3
EEN024130	Energy management and audit lab	Laboratory	1
	Semester-VIII		
Course Code	Title of the Course	Course Type	Credit
EEN074xx0	Program Elective – 5	Theory	3
EEN074xx0	Program Elective – 6	Theory	3
EEN074xx0	Program Elective – 7	Theory	3
EEN054020	Project-2 (Project work, seminar and internship in industry or at appropriate workplace)	Project/ Internship	8
	Semester-IX		
Course Code	Title of the Course	Course Type	Credit
EEN075xx0	Program Elective – 8	Theory	3
EEN075xx0	Program Elective – 9	Theory	3
EEN055010	Project-3 (Project work, seminar and internship in industry or at appropriate workplace)	Project/ Internship	16

	Semester-X							
Course Code	Title of the Course	Course Type	Credit					
EEN055020	Project-4 (Project work, seminar and internship in	Project/	20					
	industry or at appropriate work place)	Internship						

Program Elective List							
Program Elective	CourseCode	CourseTitle					
	EEN073200	Smart Grid					
PE-1	EEN073220	Bio-Energy Systems					
1 L-1	EEN073240	Introduction to Hybrid and Electric Vehicles					
	EEN073260	Project Management					
PE-2	EEN073280	Materials Science for Energy Applications					
F L-2	EEN073300	EHV AC & DC Transmission					
	EEN074150	Modern Power Converters					
PE-3	EEN074170	Flexible AC Transmission Systems					
FL-3	EEN074190	Energy and Environment					
	EEN074210	Foundations of Optimization					
DE 4	EEN074230	Advanced PV Technology					
PE-4	EEN074250	Power Generation Economics					
	EEN074040	Computer Aided Power System Analysis					
	EEN074060	DigitalImageProcessing					
PE-5	EEN074080	Fuzzy Logic and Evolutionary Algorithms					
	EEN074100	Computational Intelligence for Power Applications					
	EEN074120	Power Electronics for Renewable Energy Technologies					
PE-6	EEN074140	Heat and Mass Transfer					
	EEN074140	Fundamentals of Nano Electronics					
PE-7	EEN074180	Energy Efficient Building					
		Waste to Energy					
	EEN074200						

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

	EEN075030	MachineLearning
PE-8	EEN075050	RealTimeEmbeddedSystem
	EEN075070	ElectricalMachineDesign
DE 0	EEN075090	AdvancedMicroprocessor&EmbeddedSystems
PE-9	EEN075110	ProcessControlandInstrumentation
	EEN075130	DigitalSystemDesign

Semester I

Course Code	Course Title	Course Type	Contact Hours					Credit	
PHY03101	Physics	Theory	L	3	T	1	P	0	4
Pre-requisite	:10+2 with science								
Course Assessment Methods:		0 marks internal exam	ination &	60 mar	ks exte	rnal e	examin	ation	
Syllabus Version	: 1								

Course Objectives: The objective of this course is to familiarize the students with basic laws of motion, rigid body dynamics, mechanical properties of matter, oscillations and waves, and relativity. It aims to equip the students to deal with basic problems that they would be seeing in the real world.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To understand the basic laws of mechanics.
- 2. To use and apply the Moment of inertia, Rigid body kinematics, Rigid body kinetics.
- 3. To understand mechanical concepts of matter like Viscosity and Poiseulle's equation.
- 4. To explain Simple harmonic oscillation, damped harmonic oscillation and forced oscillation.
- 5. To understand the theory of relativity.

Unit – 1 Review of Vector calculus

Vector algebra addition, Subtraction, components of vectors, scalar and vector multiplications, triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical). Vector calculus differentiation, partial differentiation, Integration, vector operator del, gradient, divergence and curl, Integral theorems of vectors. Conversion of vector from one coordinate system to another.

Unit – 2 Static electric Field

Coulomb's law, Electric field intensity, Electrical field due to charges. Line, surface, Volume charge distributions. Gauss law and its applications. Absolute electric potential, Potential difference, calculation of potential differences for different configurations. Electric dipole, electrostatic energy and energy density.

Unit – 3 Static Magnetic field

Biot-savert Law, Ampere Law, Magnetic Flux and Magnetic flux density, Scalar and Vector magnetic potentials, steady magnetic fields produced by current carrying conductors.

Unit – 4 Rigid Body Motion and Mechanical Properties of Matter

Rigid body, Moment of inertia, Rigid body kinematics, Rigid body kinetics, Motion of gyroscope. Modulus of rigidity, Poisson's ratio, relation connecting different elastic-constants, Viscosity, Poiseulle's equation of liquid flow through a narrow tube.

Unit – 5 **Oscillations and Waves**

Simple harmonic oscillation, damped harmonic oscillation and forced oscillation, Q factor and resonance. Differential equation of one-dimensional wave and its solution, reflection and transmission of waves.

Text Books

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 1. Physics Part-I: Resanick and Halliday Vol I, Edition 5 (2007).
- 2. Mechanics: D.S. Mathur S. Chand Publishing Edition Ist(2000).
- 3. Concepts in Physics Vol .I: H.C. Verma, Dhanpat Rai and Co. Edition Ist.
- Mechanics: R.K. Shukla and Anchal Srivastava New Age International Publishers (2006).

Reference Books:

- 1. An Introduction to Mechanics: D. Kleppner and R.Kolenkow, Ist Edition, McGraw Hill (2017).
- 2. Mechanics (Berkeley Physics Course) Vol. I: C. Kettel, W. D. Knight, M.A. Ruderman and A.C. Helmholz edition 2nd, McGraw Hill Education, (2017).

Course	Cour	se Title	Course Type	Contact Hours			Credit			
Code										
MAT03101	Mathe	matics-I	Theory	L	3	T	3	P	0	4
Pre-requisite		:NILL								
Course Asses	40 marks in	nternal	exami	nation &	2 60 m	arks e	xternal	examination		
Syllabus Vers	sion:	1								

Course Objectives: The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.
- 2. To explain the fallouts of Rolle's Theorem that is fundamental to application of analysis to Engineering problems.
- 3. To discuss the tool of power series and Fourier series for learning advanced Engineering Mathematics.
- 4. To deal with functions of several variables that is essential in most branches of engineering.
- 5. To use the essential tool of matrices and linear algebra in a comprehensive manner.

Unit – 1 Calculus

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin theorems with remainders, indeterminate forms, and L'Hospital's rule, Maxima and minima.

Unit – 2 Sequences and Series

Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions; Fourier series: Half range sine and cosine series, Parseval's theorem.

Unit – 3 **Multivariable Calculus (Differentiation)**

Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.

Unit – 4 Matrices: Inverse and rank of a matrix, rank-nullity theorem

System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Determinants; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.

Text Books

- 1. Reena Garg, Engineering Mathematics, Khanna Book Publishing Company, 2022.
- 2. Reena Garg, Advanced Engineering Mathematics, Khanna Book Publishing Company, 2021.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2006.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, NewDelhi, 2008.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Reference Books:

- W. E. Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edn., Wiley India, 2009.
- N. P. Bali and Manish Goyal, Atext book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- B.S. Grewal, Higher Engineering Mathematics, KhannaPublishers, 36th Edition, 2010.

Course	Course Title	Course Type	Contact Hours						Credit
Code									
EEN07101	Basic	Theory	L	3	T	1	P	0	4
	Electrical								
	Engineering								
Pre-requisite :Basic		knowledge of physic	ics and	l solvin	g skills.				

Course Assessment Methods:

40 marks internal examination & 60 marks external examination

Syllabus Version:

Course Objectives:

- To impart basic knowledge about the Electric and Magnetic circuits.
- To inculcate an understanding of the AC fundamentals.
- To understand the working of various Electrical Machines.
- To know about the single-line diagram of the power system.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To implement mesh and nodal analysis to analyze DC circuits.
- 2. To determine the analogy between electrical and magnetic circuits and thus explore the magnetic circuit.
- 3. Identify, characterize, and therefore analyze single and three-phase AC circuit.
- 4. To demonstrate the operation and application of transformer and induction motor.
- To describe the operation and layout of a power system network.

Unit – 1 **DC** circuits

Review of Linear, Lumped, Finite, Passive, Bilateral Circuit Elements, Voltage sources, Current sources, Current, and NodeVoltage analysis of DC Circuits.

Unit - 2Magnetic circuits

MMF, Magnetic flux, Reluctance, Flux density, Analogy with electric circuits, Analysis ofmagnetic circuits.

Unit - 3**AC** circuits

Single-phase AC Circuit

Representation of sinusoidal voltages and currents, RMS value and average value, j operator, Phasors, Voltages and Currents relationship and instantaneous and average power in a pure resistor, pure inductor and pure capacitor, Impedance, Admittance, Analysis of circuits, Complex power, active and reactive powers, Power Triangle, Power factor, Three-phase AC Circuit. Symmetrical sinusoidal supply systems, voltage, current and power relationship in 3-phase balanced star and delta-connected loads, Analysis of three-phase balanced star and delta connected loads.

Unit – 4	Transformers and three phase induction motors
----------	---

Transformers

Construction, working principle, Emf equation, Transformer on no-load, Phasor diagrams on no- load and fullload. Three-Phase Induction motors Principle of operation, slip, rotor induced emf, rotor frequency.

Power System

Scheme of Power System from generation, transmission & and distribution.

Text Books

- Basic Electrical Engineering: M S Naidu & S Kamakshiah: TataMcGraw Hill Publications
- Basic Electrical Engineering: T K Nagasarkar and M S Sukhija: Oxford University Press

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

3. Electrical & Electronics Technolgy: Hughes: Pearson Publications

Reference Books:

- 1. Theory and Problems of Basic Electrical Engineering: D P Kothari & I J Nagrath: Prentice Hall Publication.
- 2. Principles of Electrical Engineering: V K Mehta: S Chand Publications.

Course	Course Title Course		rse Type			Contact	Hours	S		Credit	
Code											
EEN071030	Engine	eering	The	ory/Lab	L	1	T	0	P	2	2
	Graph	ics &									
	Des	ign									
Pre-requisite		:NILL									
Course Assess	sment M	Iethods	:	40 marks i	nternal	exami	nation &	z 60 m	arks e	xternal e	examination
Syllabus Vers	ion:	1									

Course Objectives: The objective of this Course is to provide the basic knowledge about Engineering Drawing. Detailed concepts are given in projections, technical drawing, dimensioning and specifications, so useful for a student in preparing for an engineering career.

Course Outcomes (COs): After completion of this course, the students shall be able to:

All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical, architectural and industrial) in which the skills of the CAD technicians play major roles in the design and development of new products or construction. Students prepare for actual work situations through practical training in a new state-of-the-art computer designed CAD laboratory using engineering software. This course is designed to address:

- 1. To prepare you to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- 2. To prepare you to communicate effectively
- 3. To prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- 4. The students will learn:
- 5. Introduction to engineering design and its place in society.
- 6. Exposure to the visual aspects of engineering design.
- 7. Exposure to engineering graphics standards.
- 8. Exposure to solid modelling.
- 9. Exposure to computer-aided geometric design.
- 10. Exposure to creating working drawings.
- 11. Exposure to engineering communication.

Unit – 1 Introduction to Engineering Drawing and Orthographic Projections

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales.

Principles of Orthographic Projections-Conventions - Projections of Points and lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes.

Unit – 2 Projections of Regular Solids and Sections and Sectional Views of Right Angular Solids

Covering those inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only).

Unit – 3	Isometric	Projections:	Principles	of	Isometric	projection	and	Overview	of	Computer
	Graphics									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

Listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids]

Unit – 4 Customisation & CAD Drawing; Annotations, layering & other functions

: Consisting of set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

Covering applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling

Unit – 5 Demonstration of a simple team design project that illustrates

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).

Text Books

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House.
- 2. Jain Pradeep, (2019) Engineering Graphics and Design, Khanna Book Publishing Company
- 3. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education.
- 4. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers.
- 6. (Corresponding set of) CAD Software Theory and User Manuals.

Reference Books:

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House.
- 2. Jain Pradeep, (2019) Engineering Graphics and Design, Khanna Book Publishing Company
- 3. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education.
- 4. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers.
- 6. (Corresponding set of) CAD Software Theory and User Manuals.

Course Code	Course Title	Course Type		Credit						
PHY03103	Physics Lab	Laboratory	L	L 0 T 0 P 2						
Pre-requisite	Pre-requisite :NILL									
Course Asses	Course Assessment Methods: 40 marks internal examination & 60 marks external examination									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Syllabus Version:

Course Objectives: To give students a foundational understanding of rigid body dynamics through basic experiments. To teach principles of motion, forces, and moments applied to solid objects. Develop skills in analyzing and predicting motion behaviors. Apply theoretical concepts to practical scenarios, fostering a strong grasp of mechanical systems and their behaviors.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Understand the concept of radius of gyration and its relation to rotational motion.
- 2. Gain a practical understanding of Ohm's law and its applications in electrical circuits.
- 3. Acquire knowledge of the concept of moment of inertia and learn the experimental procedure to determine the moment of inertia of rotating objects.
- 4. Familiarize oneself with the principles of different logic gates (AND, OR, NOT) in a logic system and comprehend their behaviour in digital circuits.

List of experiments

- 1. To determine the value of acceleration due to gravity and radius of gyration using bar pendulum.
- 2. To verify the ohm's law and hence determine the unknown resistance of the given material of the wire.
- 3. To determine the spring constant of a spring by (a) static method (b) dynamic method.
- 4. To study the principle of different logic gates in positive logic system.
- 5. To determine the moment of inertia of a flywheel.
- 6. To determine the value of acceleration due to gravity and radius of gyration using kater's pendulum.

Text Books

- 1. Practical of Physics by C.L. Arora, (S. Chand and Company Limited, Edition 1995).
- 2. Practical of Physics by Harnam Singh and P.S. Hemne, (S. Chand and Company Limited).

Reference Books:

- 1. Practical Physics by P. R. Sasi Kumar, (PHI Learning Pvt. Ltd., 2011).
- 2. Practical Physics by R K Shukla, (New Age International, 2007).

Course Code	Course Title	Course Type	Contact Hours Credit									
EEN07105	Basic Electrical	Laboratory	L	0	T	0	P	2	1			
	Engineering											
	Lab.											
Pre-requisite	:Knowledge of	basic electrical enginee	ering cours	se	•							
Course Assessme	ent Methods :	40 marks internal exam	ination &	60 mar	ks exte	rnal e	xamin	ation				
Syllabus Version	Syllabus Version: 1											
Course Objectives: The objective of this lab. is to provide hands- on training on the basic Electrical Engineering.												

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Students will learn on the practical implementation of Electrical fundamentals.
- 2. Students will visualize the concept of circuit laws and network theorems.
- 3. Students will acquire skills in electrical measuring devices.
- 4. Students will learn different applications of electrical machinery.

List of Experiments

- 1. Verification of KCL&KVL.
- 2. Study of AC R-L-C Series circuit.
- 3. Study of AC R-L-C parallel circuit.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 4. Verification of Thevenin's theorem
- 5. Verification of Superposition theorem
- 6. Verification of Maximum Power Transfer theorem
- 7. To Measure the power and the power factor of a single phase load by 3-Voltmeter Method.
- 8. To Measure the power and the power factor of a single phase load by 3-Ammter Method.
- 9. Study of resonance in electrical circuit.
- 10. Transformer testing.

Text Books

- 1. Johnetta Keizer, (2021) Basic Electrical LAB Experiment Guide
- 2. M.Siva Ramkumar, A.Amudha, M.S Krishnan, G.Emayavaramban (2019) Basic electrical engineering laboratory: Fundamental of Electrical, Notion Press; 1st edition
- 3. Nagrath I.J. and D. P. Kothari (2001), Basic Electrical Engineering, Tata McGraw Hill.
- 4. Hayt and Kimberly, Engineering Circuit Analysis, Tata McGraw Hill.

Reference Books:

- 1. Ritu Sahdev (2019), Basic Electrical Engineering, Khanna Book Publishing Company
- 2. Kulshreshtha D.C. (2009), Basic Electrical Engineering, Tata McGraw Hill.
- 3. Rajendra Prasad (2009), Fundamentals of Electrical Engineering, Prentice Hall, India.

Course Code	Course Title	Course Type		Co	ntact F	Iours			Credit
ENG04101	Communicative English	Theory	L	2	T	0	P	2	3
Pre-requisite	:NILL		1						
Course Assessme	nt Methods : 4	0 marks internal exam	ination &	60 mar	ks exte	ernal e	xamin	ation	
Syllabus Version	: 1								
understanding of students will be for performing situations. The st grammar or word Course Outcomes 1. Identify 2. Recogni. 3. Recogni. 4. Understa	English Grammar familiarized with the some of the most tudent will follow to choices. Is (COs): deviant use of Englize the errors of usage their own ability and and appreciate left.	f this Course is to He and Phonetics and communicative the writing convention is both in written and ge and correct them to improve their own English spoken by peowith confidence in an	entron and function and function and sourcect dispoken function fu	thus does in act thus does in act thus does in act the comments of the comment	s and in evelop cademi out ma	nform their c, soo aking e lang	ation of ability cial ar any se	effectiv to use nd prof	ely. The English fessional
	Definition, Process ganization, barriers	s, Types-Verbal, Non- of communication.	Verbal, Ei	fective	Comm	nunica	ition, C	Commu	nication
Unit – 2									
Parts of Speech									
Text Books									
1. E. Sures	h Kumar and P. Sr	reehari, Fluency in Er	ıglish – P	art II, (Commi	ınicat	ive En	glish,	OUP,

Delhi: S. Chand, 1973.

Wren, P.C.; Martin, H.; Prasada Rao, N.D.V, High School English Grammar & Composition. New

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Reference Books:

1. Alexander, L., Longman English grammar practice. New York: Longman,1999. Murphy, R., English grammar in use. Cambridge: Cambridge University Press, 2012.

Course Code	Course Title	tle Course Type Contact Hours									
HSS04101	Design	Laboratory	L	0	T	0	P	2	1		
	Thinking										
Pre-requisite	:NILL	NILL									
Course Assessmen	nt Methods: 4	0 marks internal examination	nation & 60	0 mark	s extern	nal ex	aminati	on			
Syllabus Version :	1										
Course Objectives	S:										

The objective of this Course is to provide the new ways of creative thinking and Learn the innovation cycle of Design Thinking process for developing innovative products which useful for a student in preparing for an engineering career.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Compare and classify the various learning styles and memory techniques and Apply them in their engineering education.
- 2. Analyze emotional experience and Inspect emotional expressions to better understand users while designing innovative products.
- 3. Develop new ways of creative thinking and Learn the innovation cycle of Design Thinking process for developing innovative products.
- 4. Propose real-time innovative engineering product designs and Choose appropriate frameworks, strategies, techniques during prototype development.
- 5. Perceive individual differences and its impact on everyday decisions and further Create a better customer experience.

Unit – 1	
An Insight to Lear	ning; Understanding the Learning Process, Kolb's Learning Styles, Assessing and
Interpreting.	
	ory; Understanding the Memory process, Problems in retention, Memory enhancement
techniques	
Unit – 2	
Emotions: Experience	e & Expression: Understanding Emotions: Experience & Expression, Assessing Empathy,
Application with Peer	
1 11	inking: Definition of Design Thinking, Need for Design Thinking, Objective of Design
	Brainstorming, Stages of Design Thinking Process (explain with examples) – Empathize,
Define, Ideate, Protot	
Unit – 3	· · · · · · · · · · · · · · · · · · ·
Being Ingenious & Fi	ixing Problem: Understanding Creative thinking process, Understanding Problem Solving,
Testing Creative Prob	lem Solving.
Process of Product I	Design: Process of Engineering Product Design, Design Thinking Approach, Stages of
Product Design, Exan	nples of best product designs and functions, Assignment – Engineering Product Design
Unit – 4	
Prototyping & Testin	g; What is Prototype? Why Prototype? Rapid Prototype Development process, Testing,

Sample Example, Test Group Marketing.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	Difference: Understanding Individual differences & Uniqueness, Group Discussion and
Activities to enc	ourage the understanding, acceptance and appreciation of Individual differences.
Unit – 5	
Design Thinking	g & Customer Centricity: Practical Examples of Customer Challenges, Use of Design Thinking
to Enhance Cust	omer Experience, Parameters of Product experience, Alignment of Customer Expectations with
Product Design	of Tournament – Knock-Out, League/Round Robin & Combination.
Feedback, Re-D	esign & Re-Create: Feedback loop, Focus on User Experience, Address "ergonomic challenges,
User focused d	esign, rapid prototyping & testing, final product, Final Presentation - "Solving Practical
Engineering Pro	blem through Innovative Product Design & Creative Solution".
Text Books	
Reference Book	3:

Semester II

Course Code	Course Title	Course Type		Contact Hours							
CHM03102	Chemistry-I	Theory	L	3	T	0	P	0	3		
Pre-requisite	:NILL	NILL									
Course Assessmen	nt Methods:	40 marks internal examination	nation & 6	0 mark	s exteri	nal exa	aminati	on			
Syllabus Version:	1										

Course Objectives:

The objective of the Chemistry I is to acquaint the students with the basic phenomenon/concepts of chemistry, the student faces during course of their study in the industry and Engineering field. The student with the knowledge of the basic chemistry, will understand and explain scientifically the various chemistry related problems in the industry/engineering field. The student will able to understand the new developments and breakthroughs efficiently in engineering and technology. The introduction of the latest (R&D oriented) topics will make the engineering student upgraded with the new technologies.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- 2. To rationalise bulk properties and processes using thermodynamic considerations.
- 3. To distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques
- 4. To rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.
- 5. To list major chemical reactions that are used in the synthesis of molecules.

Unit – 1 Atomic and Molecular Structure

Schrodinger equation. Particle in a box solutions and their applications for conjugated molecules and nanoparticles. Forms of the hydrogen atom wave functions and the plots of these functions to explore their spatial variations. Molecular orbitals of diatomic molecules and plots of the multicentre orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Unit – 2	Spectroscopic techniques and applications; Intermolecular forces and potential energ
	surfaces

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterization techniques. Diffraction and scattering. Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H3, H2F and HCN and trajectories on these surfaces.

Unit – 3 Use of free energy in chemical equilibria

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

Unit – 4 **Periodic properties**

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries.

Unit – 5 Stereochemistry and Organic reactions and synthesis of a drug molecule

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds.

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Text Books

- 1. AICTE's Prescribed Textbook: Chemistry I with Lab Manual, Khanna Book Publishing.
- 2. Engineering Chemistry, by Manisha Agrawal.
- 3. University chemistry, by B. H. Mahan
- 4. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 5. Fundamentals of Molecular Spectroscopy, by C. N. Banwell

Reference Books:

- 1. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan.
- 2. 7Physical Chemistry, by P. W. Atkins.
- 3. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Course Code	Course Title	Course Title Course Type Contact Hours								
MAT03102	Mathematics- II	Theory	L	3	T	1	P	0	4	
Pre-requisite	:NILL									
Course Assessmen	nt Methods:	0 marks internal exami	nation & 6	0 mark	s exteri	nal exa	aminat	ion		
Syllabus Version :	: 1									

Course Objectives: Mathematics is fundamentally necessary to formulate, solve and analyze engineering problems. The objective of this course is to familiarize the prospective engineers with techniques in matrices, ordinary differential equations and complex variables. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines.

- 1. Course Outcomes (COs): After completion of this course, the students shall be able to:
- 2. The essential tool of matrices and linear algebra in a comprehensive manner.
- 3. The effective mathematical tools for the solutions of differential equations that model physical processes.
- 4. The tools of differentiation and integration of functions of a complex variable that are used in various techniques dealing engineering problems.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 1 Matrices

Linear Systems of Equations; Linear Independence; Rank of a Matrix; Determinant, Inverse of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Determinants; Eigenvalues and eigenvectors; Orthogonal transformation; Diagonalization of matrices; Cayley-Hamilton Theorem.

Unit – 2 First order ordinary differential equations

Exact, linear and Bernoulli's equations. Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Unit – 3 Ordinary differential equations of higher orders

Second order linear differential equations with variable coefficients: Euler-Cauchy equations, solution by variation of parameters; Power series solutions: Legendre's equations and Legendre polynomials, Frobenius method, Bessel's equation and Bessel's functions of the first kind and their properties.

Unit – 4 Complex Variable – Differentiation

Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.

Unit – 5 Complex Variable

Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals using the Bromwich contour.

Text Books

- 1. AICTE's Prescribed Textbook: Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variable), Khanna Book Publishing Co.
- 2. Reena Garg, Engineering Mathematics, Khanna Book Publishing Company, 2022.
- 3. Reena Garg, Advanced Engineering Mathematics, Khanna Book Publishing Company, 2021.
- 4. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2006.
- 5. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 6. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edn., Wiley India, 2009.

Reference Books:

- 1. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 2. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- 3. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- 4. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- 5. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.
- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Course Code	Course Title	Course Type	Contact Hours							
MME07102	Biology for Engineers	Theory	L	3	Т	0	Р	0	3	
Pre-requisite	:Nill				•	•	•	•		

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Assessment Methods: 40 marks internal examination & 60 marks external examination

Syllabus Version:

Course Objectives:

- 1. Course Outcomes (COs): After completion of this course, the students shall be able to:
- 2. Describe how biological observations of 18th Century that lead to major discoveries.
- 3. Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological
- 4. Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring
- 5. Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine
- 6. Classify enzymes and distinguish between different mechanisms of enzyme action.
- 7. Identify DNA as a genetic material in the molecular basis of information transfer.
- 8. Analyse biological processes at the reductionistic level
- 9. Apply thermodynamic principles to biological systems.
- 10. Identify and classify microorganisms

Unit – 1 Introduction and Classification

To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry. Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.

Purpose: To convey that classification per se is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricoteliec, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus

Unit – 2 Genetics

Purpose: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.

Unit – 3 **Biomolecules: Purpose and Enzymes**

To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids Tutorial: Exploring the Four Orders of Nature; Exploring Co-existence in Existence

To convey that without catalysis life would not have existed on earth, Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme catalyze reactions. Enzyme classification. Mechanism of enzyme action. Discuss at least two examples.

Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.

Unit – 4 Information Transfer and Macromolecular analysis

Purpose: The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination. DICOM Image formats, The DNA Technology (Use and Application) Regulation Bill, 2019.

Purpose: How to analyses biological processes at the reductionistic level

Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Unit - 5 Metabolism Purpose and Microbiology

The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2

+ H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge Microbiology

Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.

Text Books

- 1. General Biology, Uma Devi Koduru, Khanna Book Publishing Company.
- 2. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd
- 3. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons
- 4. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company

Reference Books:

- 1. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
- 2. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

Course Code	Course Title	Course Type	Contact Hours						Credit
CSE07102	Programming	Theory	L	3	Т	0	P	0	3
	for Problem								
	Solving								
Pre-requisite	:NILL								
Course Assessmen	nt Methods:	40 marks internal exami	mination & 60 marks external examination						
Syllabus Version : 1									

Syllabus Version:

- 1. Course Objectives:
- 2. To learn the fundamentals of computers.
- 3. To understand the various steps in program development.
- 4. To learn the syntax and semantics of C programming language.
- 5. To learn the usage of structured programming approach in solving problems.
- 6. To understated and formulate algorithm for programming script
- 7. To analyze the output based on the given input variables.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To formulate simple algorithms for arithmetic and logical problems.
- 2. To translate the algorithms to programs (in C language).
- 3. To test and execute the programs and correct syntax and logical errors.
- 4. To implement conditional branching, iteration and recursion.
- 5. To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

 $_{\rm Page}19$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 6. To use arrays, pointers and structures to formulate algorithms and programs.
- 7. To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.
- 8. To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

Unit – 1 **Introduction to Programming**

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.). Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudocode with examples. From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code.

Unit – 2 Arithmetic Expression and Arrays

Arithmetic expressions and precedence.

Conditional Branching and Loops. Writing and evaluation of conditionals and consequent branching. Iteration and loops.

Arrays, Arrays (1-D, 2-D), Character arrays and Strings

Unit – 3 **Sorting algorithms**

Basic Algorithms, Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit – 4 Functions and Recursion

Function, Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference.

Recursion, Recursion as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit – 5 **Pointers and Structures**

Structures, Defining structures and Array of Structures.

Pointers, Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation).

File handling (only if time is available, otherwise should be done as part of the lab).

Text Books

- 1. AICTE's Prescribed Textbook: Programming for Problem Solving, Khanna Book Publishing Co.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.

Reference Books:

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India.

Course Code	Course Little	Course Type	irse Type Contact Hours							
CHM03104	Chemistry- I	Laboratory	L	0	T	0	P	2	1	
	Lab									
Pre-requisite	:NILL	:NILL								
Course Assessme	40 marks internal exam	ination &	60 mar	ks exte	rnal e	xamin	ation			
Syllabus Version	: 1									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Objectives: The objective of Chemistry I is to acquaint the students with the basic phenomenon/concepts of chemistry, the student faces during course of their study in the industry and Engineering field. The student with the knowledge of basic chemistry, will understand and explain scientifically the various chemistry related problems in the industry/engineering field. The student will able to understand the new developments and breakthroughs efficiently in engineering and technology. The introduction of the latest (R&D oriented) topics will make the engineering student upgraded with the new technologies.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To estimate rate constants of reactions from concentration of reactants/products as a function of time
- 2. To measure molecular/system properties such as surface tension, viscosity, conductance of solutions, redox potentials, chloride content of water, etc.
- 3. To synthesize a small drug molecule and analyze a salt sample.

List of Experiments

Choice of 10-12 experiments from the following:

- 1. Determination of surface tension and viscosity.
- 2. Thin layer chromatography.
- 3. Ion exchange column for removal of hardness of water.
- 4. Determination of chloride content of water.
- 5. Colligative properties using freezing point depression.
- 6. Determination of the rate constant of a reaction.
- 7. Determination of cell constant and conductance of solutions.
- 8. Potentiometry determination of redox potentials and emfs.
- 9. Synthesis of a polymer/drug.
- 10. Saponification/acid value of an oil.
- 11. Chemical analysis of a salt.
- 12. Lattice structures and packing of spheres.
- 13. Models of potential energy surfaces.
- 14. Chemical oscillations- Iodine clock reaction.
- 15. Determination of the partition coefficient of a substance between two immiscible liquids.
- 16. Adsorption of acetic acid by charcoal.
- 17. Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

viscosity for golden sols and or coagulation of the visite part of egg.
Text Books
Reference Books:

Course Code	Course Title	Course Type	Contact Hours Cre							
CSE07104	Programming for Problem Solving Lab	Laboratory	L	0	Т	0	P	4	2	
Pre-requisite	:NILL	:NILL								
Course Assessmen	nt Methods:	40 marks internal examination & 60 marks external examination								
Syllabus Version :	1					•				

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Objectives:

- 1. To learn the fundamentals of computers.
- 2. To understand the various steps in program development.
- 3. To learn the syntax and semantics of C programming language.
- 4. To learn the usage of structured programming approach in solving problems.
- 5. To understand and formulate algorithms for programming script.
- 6. To analyze the output based on the given input variables.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To formulate algorithms for simple problems.
- 2. To translate given algorithms to a working and correct program.
- 3. To be able to correct syntax errors as reported by the compilers.
- 4. To be able to identify and correct logical errors encountered at run time.
- 5. To be able to write iterative as well as recursive programs.
- 6. To be able to represent data in arrays, strings and structures and manipulate them through a program.
- 7. To be able to declare pointers of different types and use them in defining self-referential structures.
- 8. To be able to create, read and write to and from simple text files.

Lists of experiments

- 1. Familiarization with programming environment
- 2. Simple computational problems using arithmetic expressions
- 3. Problems involving if-then-else structures
- 4. Iterative problems e.g., sum of series
- 5. 1D Array manipulation
- 6. Matrix problems, String operations
- 7. Simple functions
- 8. Programming for solving Numerical methods problems
- 9. Recursive functions
- 10. Pointers and structures
- 11. File operations

Text Books

- 1. AICTE's Prescribed Textbook: Programming for Problem Solving, Khanna Book Publishing Co.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.

Reference Books:

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India.

Course Code	Course Title	Course Type		Contact Hours						
EEN07102	Workshop	Theory/Lab	L	1	T	0	P	4	3	
	Manufacturing									
	Practices									
Pre-requisite	:NILL									
Course Assessmen	nt Methods:	40 marks internal exami	40 marks internal examination & 60 marks external examination							
Syllabus Version	: 1									

Course Objectives:

- 1. To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.
- 2. To have a study and hands-on-exercise on plumbing and carpentry components.
- 3. To have a practice on gas welding, foundry operations and fitting
- 4. To have a study on measurement of electrical quantities, energy and resistance to earth.

5. To have a practice on soldering.
Course Outcomes (COs): After completion of this course, the students shall be able to: 1. To fabricate components with their own hands. 2. To relate practical knowledge of the dimensional accuracies and dimensional tolerances possible wirdifferent manufacturing processes. 3. To design small devices of their interest by assembling different components
Unit – 1
Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods.
Unit – 2
CNC machining, Additive manufacturing.
Unit – 3
Fitting operations & power tools, Electrical & Electronics.
Unit – 4
Carpentry, Plastic moulding, glass cutting
Unit – 5
Metal casting Welding (arc welding & gas welding), brazing
Practical: 1. Machine shop 2. Fitting shop 3. Carpentry 4. Electrical & Electronics 5. Welding shop (Arc welding + Gas welding) 6. Casting 7. Smithy 8. Plastic moulding & Glass Cutting
Text Books
 Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshot Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition Pearson Education India Edition, 2002. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology – I" Pearson Education, 2008.
Reference Books:
 Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw Hill House, 2017.

Course	Code	Course Title	Course Type	Contact Hours					Credit	
HSS04	1102	UniversalHuman Values- IIUnderstanding	Theory	L	3	T	0	P	0	3

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

	Harmony And Ethical Human Conduct	• • • • • • • • • • • • • • • • • • •							
Pre-requisite	:NILL								
Course Assessmen	t Methods:	40 marks internal examination & 60 marks external examination							
Syllabus Version:	1								

Course Objectives:

- 1. To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- 2. To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- 3. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature.

Thus, this course is intended to provide a much-needed orientational input in value education to the young enquiring minds.

Course Outcomes (COs): After completion of this course, the students shall be able to:

By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship, and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

Therefore, the course and further follow up is expected to positively impact common graduate attributes like:

- 1. Holistic vision of life
- 2. Socially responsible behaviour
- 3. Environmentally responsible work
- 4. Ethical human conduct
- 5. Having Competence and Capabilities for Maintaining Health and Hygiene
- 6. Appreciation and aspiration for excellence (merit) and gratitude for all
- 7. This is only an introductory foundational input. It would be desirable to follow it up by
- 8. Faculty-student or mentor-mentee programs throughout their time with the institution
- 9. Higher level courses on human values in every aspect of living.

Unit – 1 Introduction to Value Education

Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education); Understanding Value Education; Self-exploration as the Process for Value Education; Continuous Happiness and Prosperity – the Basic Human Aspirations; Happiness and Prosperity – Current Scenario; Method to Fulfill the Basic Human Aspirations

Tutorial: Sharing about Oneself; Exploring Human Consciousness; Exploring Natural Acceptance

Unit – 2	Harmony in the Human Being	. 1	•
TT 1 . 11 T		G 10 1 1 D 1 D' '	

Understanding Human being as the Co-existence of the Self and the Body; Distinguishing between the Needs of the Self and the Body; The Body as an Instrument of the Self; Understanding Harmony in the Self; Harmony of the Self with the Body; Programme to ensure self-regulation and Health

Tutorial: Exploring the difference of Needs of Self and Body; Exploring Sources of Imagination in the Self; Exploring Harmony of Self with the Body

Unit – 3	Harmony in the Family and Society
----------	-----------------------------------

Harmony in the Family – the Basic Unit of Human Interaction; 'Trust' – the Foundational Value in Relationship; : 'Respect' – as the Right Evaluation; : Other Feelings, Justice in Human-to-Human Relationship; Understanding Harmony in the Society; Vision for the Universal Human Order.

Tutorial: Exploring the Feeling of Trust; Exploring the Feeling of Respect; Exploring Systems to fulfil Human Goal

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 4 Harmony in the Nature/Existence

Understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature; Realizing Existence as Co-existence at All Levels; The Holistic Perception of Harmony in Existence

Tutorial: Exploring the Four Orders of Nature; Exploring Co-existence in Existence

Unit – 5 Implications of the Holistic Understanding – a Look at Professional Ethics

Natural Acceptance of Human Values; Definitiveness of (Ethical) Human Conduct; A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order; Holistic Technologies, Production Systems and Management Models- Typical Case Studies; Strategies for Transition towards Value-based Life and Profession; Competence in Professional Ethics;

Tutorial: Exploring Ethical Human Conduct; Exploring Humanistic Models in Education; Exploring Steps of Transition towards Universal Human Order

Text Books

- 1. The Textbook A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. The Teacher's Manual- Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53
- 3. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 4. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 5. The Story of Stuff (Book).
- 6. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 7. Small is Beautiful E. F Schumacher.
- 8. Slow is Beautiful Cecile Andrews
- 9. Economy of Permanence J C Kumarappa

Reference Books:

- 1. Bharat Mein Angreji Raj Pandit Sunderlal
- 2. Rediscovering India by Dharampal
- 3. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 4. India Wins Freedom Maulana Abdul Kalam Azad
- 5. Vivekananda Romain Rolland (English)
- 6. Gandhi Romain Rolland (English)

Semester III

Course Code	Course Title	Course Type	Contact Hours						
EEN012010	ELECTRICAL	Theory	L	3	T	0	P	0	3
	MACHINES – I	MACHINES – I							
Pre-requisite :NILL									
Course Assessment Methods: 40 marks internal examination & 60 marks external examination									
Syllabus Version: 1									
Course Objectives :To clearly understand the basic concepts of the electrical machines working in the modern									
power system such as transformers and d.c. machines. To learn the analytical methods to develop machine									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

models and to further solve problems associated operation of transformers, motors and generators.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Describe construction, operation and development of phasor diagram of transformer.
- 2. Analyze equivalent circuit, losses, efficiency, voltage regulation, and tests on transformer.
- 3. Evaluate parallel operation of transformers, operation of auto transformer.
- 4. Describe construction, operation, and characteristics of all types of dc machines (both motors and generators).
- 5. Analyze the speed control, losses, efficiency, and tests on dc machines.

Unit – 1 Transformer Fundamentals

Transformers: Review of Construction, ratings & specification of transformer, Principle of operation of single phase transformer

Unit – 2 Phasor diagram, equivalent circuit, tests, voltage regulation, losses and efficiency.

Phasor diagram (no- load and on-load). Development of equivalent circuit, O.C and S.C tests, Voltage regulation, losses and efficiency, All-dayefficiency

Unit – 3 **Tests, Parallel operation, and Autotransformers**

Polarity test, Sumpner's test. Parallel operation of single phase and three phase transformers, Autotransformers.

Unit – 4 **D.C. Machines fundamentals, excitation, and characteristics.**

DC Generators:Construction, principleof operation, Methodsof excitation, armaturereaction, commutation, characteristics of DC generators-OCC and external characteristics. DC Motors: Principleof operation, characteristics of motors, different types of D.C. motor (shunt & series & compound).

Unit – 5 Speed control, starters, losses and efficiency

Fieldandarmaturemethodsofspeedcontrol,principleofDC motor starting, 3 point starters.Losses and Efficiencyof DC machines,Swinburne's test,Hopkinson's test.

Text Books

1. P.S. Bhimbra – Electrical Machinery (Ed. 4) – Khanna Pub, 1986

Reference Books:

- 2. Clayton and Hankock Performance and Design of DC Machines Oxford IBH, 1994.
- 3. Nagrath and Kothari Electrical Machines TMH, 1993.
- 4. M.G. Say AC. Machines (Ed.5) Pitman, 1993.
- 5. P.K. Mukherjee & S. Chakravorti Electrical Machines (Ed.2) Dhanpat Rai, 1993

Course Code	Course Title	Course Type	Contact Hours C							
EEN012030	SIGNALS AND	Theory	L	3	T	0	P	0	3	
	SYSTEMS									
Pre-requisite	:NILL	:NILL								
Course Assessment Methods: 40 marks interna			nation & 6	0 mark	s exteri	nal ex	aminat	ion		
Syllabus Version	1									

Course Objectives:

- 1. To introduce different types of signals, their behavior and significance.
- 2. To understand various classifications of systems and their characteristics.
- 3. Understand the representation of signals and systems in time and frequency domain.
- 4. To introduce the concept of transforms and their properties.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

5. To understand analog filters, their representation and characteristics.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Develop a fundamental understanding of signals and systems and their characteristics.
- 2. Apply Laplace transforms for signal analysis.
- 3. Apply mathematical modelling for Time domain representation and analysis of signals and systems.
- 4. Apply mathematical modelling for Frequency domain representation and analysis of signals and systems.
- 5. Develop basic understanding of filters, their characteristics and design techniques for analog filters.

Unit – 1 Introduction to signals and systems.

Definition of signal, Classification of signals with examples, Elementary signals, Basic operations on signals and related numericals. Definition of system, Classification of system and their Properties.

Unit – 2 Laplace Transforms

Introduction, bilateral and unilateral Laplace transforms and their region of convergence, Inverse Laplace transform, Properties of Laplace transforms. Numerical on Laplace transforms using properties and formulae. Application insolving circuit problems and differential equation.

Unit – 3 Time-Domain Representations For Linear Time Invariant (LTI) Systems.

Differential and difference equation representations (classical method), related numerical. Impulse response representations (convolution integration and convolution sum), properties of impulse response representations, block diagram representations.

Unit – 4 Fourier Representation For Signals

Introduction, Continuous Time and Discrete Fourier series, Continuous Time and Discrete Fourier Transforms.. Application of Fourier representations, Frequency response of LTIsystems and numerical on it.

Unit – 5 Analog Filter Design

Introduction, Classification of filters, filter characteristics. Design of Analog filters.

Text Books

- 1. Signal & System by Haykin Van Veen (John Wiley and Sons)
- 2. Signal & System by I.J.Nagrath, S.N. Sharan , R Ranjan (TMH)

Reference Books:

- 1. Signal and System by D .k Cheng
- 2. Digital Filter Analysis, Design, and Application by Andrews Antononiu (TMH)

Course Code	Course Title	Course Type	e Contact Hours Cro						Credit
EEN012050	ANALOG AND DIGITAL ELECTRONICS		L	3	Т	0	P	0	3
Pre-requisite	:NILL								
Course Assessme	nt Methods :	40 marks internal examination & 60 marks external examination							
Syllabus Version	: 1								

Course Objectives:

1. To provide an understanding about semiconductor devices.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 2. To learn about the behavior of P-N junction material to voltage, current and temperature.
- 3. To be able to analyze biasing of transistors. Methods of transistor biasing.
- 4. To provide an understanding of digital circuits and systems.
- 5. To learn about the basic elements or building blocks of digital circuits and systems, the methods and approaches leading to their practical design and real-time implementation.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Learn the basics of semiconductor devices, design of electronic devices and circuits.
- 2. Learn the basics characteristics of transistor and it's operation and applications.
- 3. Learn the basics of number systems and binary codes.
- 4. Learn the basics of logic gates.
- 5. Apply Boolean algebra for representation of digital logic.

Unit – 1 **P-N Junction**

Open circuited P-N Junction, Bias conditions, The current components in a P-N Junction diode. The volt-ampere characteristics Reverse saturation current, Breakdown. The effect of temperature on V-I characteristics. Diode resistance, Transition capacitance, Diffusion capacitance, Switching lines Zener diodes, Semiconductor photodiode, Light emitting diode, specifications.

Unit – 2 **Diode circuits and Transistor Characteristics**

Diode as a circuit element, load- line concept diode model, clipping circuits, clipping at two independent levels, clamping circuits. Bipolar Junction Transistor, Bias conditions, Transistor current components common base configuration. Transistor amplifying action, Transistor as a switch, common emitter configuration, common collector configuration, Maximum voltage rating, Limits of operation, Transistor specifications

Unit – 3 Number Systems and Codes

Number Systems (Binary, decimal, octal, hexadecimal). Number system conversions. Sub topic 3: Binary Codes (Numeric and Alphanumeric codes.), Arithmetic operations (Binary arithmetic-addition, subtraction, multiplication and division, 1's and 2's complement arithmetic).

Unit – 4 Logic Circuits & Logic Families

Logic Gates (OR, AND, NOT, XOR, XNOR, NOR and NAND gates, truth tables), Logic families.

Unit – 5 **Boolean Algebra**

Boolean algebra (DE Morgan's theorems, Sum of products, product of sums (Minterm& max- terms). Boolean Function minimization (Function minimization using Karnaugh's map,Don't care conditions, variable entered mapping, minimization using variable entered maps)

Text Books

- 1. Donald P leach & Albert Paul Malvino-Digital Principles and Applications (Ed.4)-TMH, 1991.
- 2. Douglas V. Hall Digital circuits and Systems -MGH, 1989.
- 3. William I. Fletcher- Engineering Approach to Digital Design PH I, 1990.
- 4. Taub & Schilling Digital Integrated Electronics-MGH, 1977.

Reference Books:

- 1. Millman and Halkias Integrated Electronics: Analog and Digital circuits and systems-TMH- 1992
- 2. Boylestad and Nashelsky Electronic Devices and Circuit Theory (Ed. 5. -PHI, 1993.

Course Code	Course Title	Course Type	Contact Hours Cred					Credit	
EEN012070	ELECTRICAL	Laboratory	L	0	T	0	P	2	1
	MACHINES								
	LABORATORY								
Pre-requisite	:Theoretical con	cept of electrical mach	ines.	•			•		

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Assessment Methods:	40 marks internal examination & 60 marks external examination
Syllabus Version: 1	
	facilities for performing experiments related to various types of electrical o introduce the students to single-phase and three-phase electrical machines as.
	ompletion of this course, the students shall be able to:
	rides students with critical practical knowledge of electrical machines.
List of experiments	
Open circuit & Short Ci	rcuit test on a single phase transformer.
2. Sumpner's Test	
	Operation of Two Single Phase Transformer.
4. Swinburne's Test	
5. Hopkinson's Test (Rege	nerative Test)
6. Speed Control of DC Sh	
7. Load Test on DC Shunt	Generator
8. Load Characteristic of I	OC Shunt Motor
Text Books	
Reference Books:	

Course Code	Course Title	Course Type	Contact Hours Credi						Credit
EEN012090	ANALOG & DIGITAL ELECTRONICS LAB	Laboratory	L	0	Т	0	P	2	1
Pre-requisite :Theoretical concept of analog and digital systems.									
Course Assessme	ent Methods: 4	0 marks internal exam	ination &	60 mai	rks ext	ernal	examiı	nation	
Syllabus Version: 1									
Course Objectives :To provide facilities for performing experiments related to various types of electronic devices and analyzing them									

Course Outcomes (COs): After completion of this course, the students shall be able to:

1.Such hands-on experience provides students with critical practical aspects of analog and digital electronic design.

List of experiments

FIRST CYCLE: ANALOG SYSTEM DESIGN

- 1. Design of adder circuit using OP AMP.
- 2. OP-AMP as an integrator & differentiator.
- 3. Design a current to voltage and voltage to current converter using OP-AMP.
- 4. Design a Comparator circuit using OP-AMP-741 to compare between two Input.
- 5. Design a triangular wave generator using OP-AMP.
- 6. Design a Monostable and Astable Multi vibrator using 555 Timer.
- Design of a 1st order and 2nd order Low-Pass filter using OP-AMP with cutoff frequency at 1

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

KHz& pass band gain 2.

Extra Experiment (beyond course curriculum)

8. Design of a 1st order and 2nd order High-Pass filter using OP-AMP with cutoff frequency at 1 KHz& pass band gain 1.58.

SECOND CYCLE: DIGITAL SYSTEM DESIGN

- 1. To implement and verify BCD to XS-3 code converter.
- 2. Implementation of R-S, J-K, D Flip-Flop.
- 3. To implement a 3 bit MOD 6 Synchronous Counter.
- 4. Design a 3 bit Ring Counter & Twisted Ring Counter by the help of Synchronous circuit Design.
- 5. To implement a 3 bit MOD 6 Asynchronous Counter

Extra Experiment (beyond course curriculum)

Text Books

6. Design a 3 bit UP- DOWN counter with the help controlling Signal X. If X=1 It will count upward direction and if X =0 count downward direction.

Reference Books:									
Course Code	Course Title Course Type Contact Hours							Credit	
EE022110	Energy Theory L 3 T 1 P						0	4	
	Resources and								
Pre-requisite	Utilization :NILL								
•									
Course Assessmen	nt Methods :	40 marks internal exam	ination & 6	50 mark	s exter	nal ex	aminat	ion	
Syllabus Version:	: 1								
Course Objectives									
		f the various energy sou							
		of conventional energy of non-conventional en		rces					
		gies for energy conversi			utilizat	ion			
		ntal impact of the energy					hnolog	ies	
		pletion of this course, the							
		about the both conventionergy resources into us			ention	ai ene	rgy res	ources.	
	out the utilization		erar energy						
	tand the environm	ental impact of the ener	gy extracti	on and	conver	sion to	echnolo	gies.	
Unit – 1									
Conventional and	non-conventional	energy resources and the	neir notenti	ial.					
		eximate analysis and cha			utilizat	ion			
Unit – 2									
2									
		, chemical kinetics and	combustion	n charac	eteristic	cs.			
	els in engines, IC	engines, and fuel cells.							
Unit – 3									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Nuclear fission fuels and enrichment (fertile and fissile fuels), Nuclear Fusion Fuel Resources: Deuterium extraction and Tritium Breeding.

Nuclear Fuel Processing and Utilization, Nuclear Reactors and their components.

Unit - 4

Solar energy: resource and utilization.

Wind energy: resource and conversion system. Hydro energy: resource and conversion system.

Unit - 5

Biomass energy: resources and conversion routes.

Geothermal, Wave, Tidal and Ocean Thermal Energy.

Environmental impacts of energy extraction and conversion technologies

Text Books

- 1. Twidell, J. and Weir, T., Renewable Energy Resources, Taylor & Francis, 3rd Edition, 2015.
- 2. Glassman, I., Yetter, R. A., and Glumac, N. G., Combustion, Academic Press, 5th Edition, 2014.
- 3. Duffie, J. A., Beckman, W.A., Solar Engineering of Thermal Processes, John Wiley and Sons, 4th Edition, 2013.
- 4. Boyle, G., Renewable Energy: Power for a Sustainable Future, Oxford University Press, 3rd Edition, 2012.
- 5. Thorpe, D., Solar Technology: The Earthscan Expert Guide to Using Solar Energy for Heating, Cooling and Electricity, Roudtledge, 1st Edition, 2011
- Wagner, H. and Mathur, J., Introduction to Hydro Energy Systems (Basics, Technology and Operation), Springer-Verlag Berlin Heidelberg, 2011
- 7. Stacey, W. M., Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion, Wiley-VCH Publication, ISBN: 978-3-527-62932-9, 2010.

Reference Books:

- 1. Cheng, J., Biomass to Renewable Energy Processes, CRC Press, 1st. Edition, 2009.
- 2. Manwell, J. F., McGowan, J. G. and Rogers, A. L., Wind Energy Explained. Theory, Design and Application, Wiley, 2nd Edition, 2009.
- 3. Lamarsh, J. R. and Baratta, A. J., Introduction to Nuclear Engineering, 3rd Edition, Prentice Hall, 2001.

SEMESTER IV

Course Code	Course Title	Course Type	Contact Hours Cred						Credit
EEN012020	Single Board Computers and IOT	Theory/Lab	L	1	Т	0	Р	4	3
Pre-requisite	:NILL					•			
Course Assessme	nt Methods:	40 marks internal exam	ination &	60 mar	ks exte	rnal e	examin	ation	
Syllabus Version	: 1								

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course (Objectives :	
----------	--------------	--

- 1. To impart basic knowledge about single-board computers.
- 2. To inculcate an understanding of IDE and coding.
- 3. To understand the workings of various external devices and their interaction with SBC.
- 4. To design and develop a product.

Course Outcom	es (COs): After completion of this course, the students shall be able to:						
	experience with the open-source platform used for building electronics projects.						
2. Use a v	variety of microprocessors and controllers.						
3. Interac	t with buttons, LEDs, motors, speakers, cameras, TV and smart phones etc.						
Unit – 1	Arduino						
Arduino is an	open source platform and its use for building electronics projects. Arduino's physical						
programmable circuit board or microcontroller and a software, IDE (Integrated Development Environment).							
Learn to write a	nd upload computer code to the physical board.						
Unit – 2	Magnetic Circuits Arduino board						
Arduino board	designs use a variety of microprocessors and controllers. Understanding sets of digital and						
analog input/ou	tput pins, USB connection which is used for loading programs from computers, power jack,						
reset button etc.							
Unit – 3							
	ttons, LEDs, motors, speakers, cameras, TV and smart phones etc.						
Design of differ	ent driver circuit for electrical appliances and radio modules.						
Text Books							
Reference Book	S:						

Course Code	Course Title	urse Title Course Type Contact Hours					Credit		
EEN012040	Linear Control System	Theory	L	3	T	0	P	0	3
Pre-requisite	:NILL	:NILL							
Course Assessmen	nt Methods:	40 marks internal exami	nation & 6	0 mark	s exteri	nal ex	aminat	ion	
Syllabus Version	: 1								
Course Objectives:									

Course Objectives

- 1. Introduction to fundamental aspects of linear control, i.e., developing dynamic models of the process and control strategies.
- 2. Determine the transient and steady-state performance of 1st and 2nd-order systems.
- 3. To develop transfer function and controller design.
- 4. Familiarization with root locus techniques and frequency domain analysis for stability and performance determination.

Course Outcomes (COs): After completion of this course, the students shall be able to:

1. Modeling and determining the transfer function of the physical systems through block diagramreduction and signal flow graphs.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 2. Determine the transient and steady-state performance of 1st and 2nd-order systems.
- 3. Determine the frequency response of a system & design of PID controllers.
- 4. Analysis of stability through root locus plot, Bode plot, and Nyquist criterion.
- . Design of lag, lead, and lag-lead compensator using time and frequency domain approach.

Unit – 1 **Modeling& Transfer Function**

Introduction to Control systems, Classification, comparison of open-loop and closed-loop systems, Representation of control systems by block diagrams, Mathematical models of electrical, mechanical, and electromechanical systems, Transfer function, and block diagram representations of dc generator. Block diagram reduction, signal flow graphs, Masons gain formula.

Unit – 2 Time response of 1st and 2nd order system

Time Response: Step response of first - and second-order systems, underdamped system response, over-damped, critically damped system - time domain specifications, Concept of the order of the system, type of systems. Steady-state errors, Error ratio, Static error Constants, Generalized error series. Dynamic error coefficients and steady-state errors are due to impulse, step, ramp, and parabolic inputs.

Unit – 3 Frequency response & PID controllers

Frequency response of a system, frequency domain specifications. Different types of controllers: Proportional control, proportional-plus- integral control, and proportional-plus-derivative control. Proportional-plus- integral-plus-derivative control, their realization.

Unit – 4 Stability analysis in time and frequency domain.

Stability- Concept and definition, BIBO stability, location of the roots of the characteristic equation in the Splane, Routh-Hurwitz stability criterion, Bode Magnitude, and phase plots, Concept of gain margin and phase margin. Root locus method, Magnitude, and angle criteria, Root locus construction rules for positive K, interpretation of nature of system response from root locus plots, Polar plots, Nyquist criterion for stability, Nyquist diagrams.

Unit – 5 Compensator Design

Control system design, design specifications, series compensation, phase- lag and phase-lead compensation frequency response approaches, lag-lead compensation.

Text Books

- 1. K. Ogata Modern Control Engineering.
- 2. Charles E. Rohrs. James L. Melsa and Donald G. Schultz-Linear Control systems- MGH, 1993.
- 3. B.C. Kuo- Automatic control system (ED. 7) -PHI, 1995.
- 4. David K. Cheng Analysis of Linear System Adison Wesley, London, 1994.

Reference Books:

- 1. Morris Driels linear Control Systems Engineering- MGH, 1996.
- 2. Norman S. Nise- Control System Engineering-Wiley publisher

Course Code	Course Title	Course Type		Co	ntact H	lours			Credit
EEN012060	POWER ELECTRONICS	Theory	L	3	T	0	P	0	3
Pre-requisite	:NILL								
Course Assessmen	nt Methods :	40 marks internal exami	nation & 6	0 mark	s exter	nal ex	amina	tion	

Syllabus Version:

Course Objectives: This course aims to familiarize the students with the fabrication, structure, and operation of various power devices and power converters required to control and convert electrical energy in the desired form.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Describe the fabrication, structure, characteristics, and operation of various power devices.
- 2. Design gate drive circuits, firing circuits and protection of various power devices. Also, analyze commutation circuits.
- 3. Describe the operation of rectifier circuits its analysis with its applications.
- 4. Describe operation of dc-dc converters, ac regulators, and their applications.
- 5. Evaluate dc-ac converters, inverters and their applications. Also analyze PWM techniques for inverter control.

Unit – 1 **Introduction**

Basic structure, Equivalent circuit, Operation. V-I characteristics, turn-on, turn-off mechanisms, gate characteristics, gate drive requirements, firing circuits, di/dt, dv/dt and overload protection, commutation circuits: Resonant commutation, complementary commutation, auxiliary commutation, calculation of committing components. TRIAC, BJTs, Power MOSFET, IGBT

Unit – 2 Single-phase converters, & Three-phase converters

Half wave, bridge converters, operation with RL and back emfloads, performance with freewheeling diode, full wavecontrolled bridge rectifier withcontrolled free wheeling, effect of source inductance. Fully controlled three-phase converters

Unit – 3 DC-DC Converters, AC regulators

Basic principle of time ratiocontrol, constant and variablefrequency, Step down and step upchopper, classification ofchoppers. Single-phase ACvoltage regulators.

Unit – 4 **DC-AC Converters**

Single phase and three phasebridge inverters, square waveoperation, 120 and 180 degreemodes, potential diagrams. Qualitative treatment of linecommutated inverters.

Unit – 5 **PWM Inverters, and PWM Technique**

Voltage control, Unipolar andBipolar voltage switching, Harmonic reduction. Sinetriangular modulation, spacevector modulator.

Text Books

- 1. Muhammad H. Rashid Power Electronics- Circuits, Devices and Applications PHI.
- 2. P.S.Bimbhra Power Electronics(scanned book)-Khanna Publishers (2006) Reference Books:
- 3. Mohan, TM Undeland, W. P. Robbins Power Electronics John wiley and Sons (SEA).

Reference Books:

- 1. Vedam Subramaniam- Power Electronics -New Age International Publications.
- 2. G.K. Dubey, S.R. Doradla, A. Joshi, Thyristorised Power Controllers, John Wiley & Son (1986)

Course Code	Course Title	Course Type	Contact Hours Credit						
EEN012080	ELECTRICAL	Theory	L		T		P		
	MACHINES –								
	II	II							
Pre-requisite	:NILL	NILL							
Course Assessmen	nt Methods:	40 marks internal exami	nation & 6	0 marks	s extern	nal exa	aminat	ion	
Syllabus Version: 1									
Course Objective	Course Objectives 'To clearly understand the basic concents of the electrical machines used in industry and								

Course Objectives: To clearly understand the basic concepts of the electrical machines used in industry and power plants such as induction motors and synchronous machines. To learn the analytical methods to develop

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

the machine models and to further solve problems associated operation of induction motors and synchronous machines.

Course Outcomes (COs): After completion of this course, the students shall be able to:

n and operation of three-phase induction motor, single-phase induction motor and induction generator.

circuit, torque equation, parameter identification tests and starters.

n and operation of synchronous machines.

circuit, voltage regulation and parallel operation of alternators.

curves, hunting and starting methods of synchronous motor.

curves, hunting ar	id starting methods of synchronous motor.							
Unit – 1	Fundamentals of three-phase induction motors							
Review of const	ruction and principle of operation of three- phase induction motor							
Unit – 2	Equivalent circuit, Torque equations, and characteristics.							
Development of	Development of equivalent circuit. Torque equation, Torque-slip characteristics.							
Unit – 3	Tests, starters, induction generator, single-phase induction motors.							
No load and blo	cked rotor tests, Starters, induction generator, Single Phase Induction Motors.							
Unit – 4	Synchronous Generators							
Constructionalfe	eatures, EMFequation, Armaturereaction.							
Leakagereactance, Synchronous impedance, Equivalent circuit. Phasordiagram, Voltageregulation by EMF, MMF,								

Unit – 5 Synchronization and Synchronous motors

Synchronizing powerand torque, Paralleloperation of twoalternators and loadsharing, Construction, Principle of operation, V-curves, Hunting. Starting methods.

Text Books

1. P.S. Bhimbra – Electrical Machinery (Ed. 4) – Khanna Pub, 1986

Reference Books:

- 2. Langsdorf A. Theory of AC Machinery- TMH, 1994.
- 3. Lawrence and Richards- Principles of AC Machinery (ED. 4.)- MGH. 1953.

ZPF, Tworeaction field theoryand Phasor diagram forsalient pole machinesand slip test.

- 4. M.G. Say- AC Machines (ED. 5) Pitmam, 1983.
- 5. Nagrath and Kothari-Electrical Machines-TMH, 1093.
- 6. P.K. Mukherjee and S. Chakravorti- Electrical Machines (ED. 2)- DhanpatRai. 1993.

Course Code	Course Title	Course Type	Contact Hours				Credit			
EEN012100	ELECTROMAGNET THEORY	IC Theory	L	3	T	0	P	0	3	
Pre-requisite :Knowledge of basic vector calculus and co-ordinate system, concept of electrostatics.									cs.	
Course Assessment Methods:		40 marks internal examination & 60 marks external examination								
Syllabus Version	1: 1									
Course Objective	es:									

- 1. To provide an understanding of co-ordinates system and vector analysis.
- 2. To learn about the electromagnetic and electrostatic field and its applications.
- 3. To be able to analyze transmission of charge.
- 4. To provide knowledge about wave propagation

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Analysis the basic mathematical concepts related to vector calculus and coordinate system.
- 2. Realize the principles of electrostatics to the solutions of problems relating to electric field and electric potential, boundary conditions and electric energy density.
- 3. Demonstrate the principles of magneto statics to the solutions of problems relating to magnetic field and magnetic potential, boundary conditions and magnetic energy density.
- 4. Demonstrate the concepts related to Faraday's law, induced emf and Maxwell's equations.
- 5. Analysis Maxwell's equations to solutions of problems relating to transmission lines and uniform plane wave propagation.

Unit – 1 The coordinate systems and revision of vector calculus

The Co-ordinate Systems, Revisionof vector calculus. Electrostatics: Electric Flux and Flux Density. Gauss's law -Energy and Potential, Capacitors and Capacitances-Method of Images

Unit – 2 Steady Electric Currents and Faraday's Law of Induction

The Equation of Continuity. Jouleslaw- Magnetostatics: The Biot-Savart law.Ampere's Force Law - Magnetic VectorPotential.- Ampere's Circuital law.Self and Mutual inductance.Maxwell's Equations from Ampere's andGauss's Laws. Maxwell's Equations inDifferential and Integral forms; Equation ofContinuity.

Unit – 3 Concept of Displacement Current

Concept of Displacement Current. Electromagnetic Boundary Conditions.

Unit – 4 Plane wave Propagation

Helmholtz wave Equation-Plane wave solution.-Plane wave propagation in lossless and lossy dielectric medium and conducting medium.Polarization of EM wave - Linear, Circular and Elliptical polarization.

Unit – 5 Transmission Lines

LCR ladder model for transmission lines. Solution for lossless lines. Wave velocity and wave impedance

Text Books

- Cheng, D.K., "Field and Wave Electromagnatics", Pearson Education (Singapore) Pte. Ltd., 2nd Edn., 1989.
- 2. Hayt, W.H., J.A. Buck, "Engineering Electromagnetics", Tata McGraw Hill.
- 3. Edward C. Jordan & Keith G. Balmain, "Electro-magnetic waves & Radiating System", PHI.
- 4. Deepak Sood, "Field & Wave, A Fundamental Approach", University Science Press.
- 5. S. C. Matapatra, SudiptaMahapatra, "Principles of Electromagnetics", Tata McGraw Hill.

Reference Books:

- 1. Matthew Sadiku, "Principles of Electromagnetics", Oxford University Press.
- 2. A.R. Harish, M. Sachidananda, "Antennas & Wave Propagation", Oxford University Press.

Course Code	Course Title	Course Type	Contact Hours						Credit
EEN082120	Basic of Renewable Energy Resources	Theory	L	3	Т	0	Р	0	3
Pre-requisite	:NILL								
Course Assessment Methods:		40 marks internal examination & 60 marks external examination							

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

T = 11 1 - 77 1	
Syllabus Versio	on: 1
Course Objectiv	ves :
Course Outcom	nes (COs): After completion of this course, the students shall be able to:
1.	
2.	
3.	
4.	
5.	
Unit – 1	Introduction
Challenges in	the field of energy engineering, perception on energy technology, Dimensions of the energy
	rical perspective on energy technology and system development: Technology development for
	on (Wind mills to super-critical power plant), transportation (Bullock cart to future car concepts)
	cation sectors (candle kerosene lamp to solid state lighting).
Unit – 2	Energy Resources
2	Energy Resources
Conventional	energy resources, Depletion of conventional energy sources and its exponential rise in
consumption;	Impact of Energy on Economy, Development and Environment, Energy for Sustainable
Development, I	Energy and Environmental policies, Need for use of new and renewable energy sources. Resource
assessment-Sol	ar energy (Photovoltaic and Solar thermal), Wind energy, Biomass and Bioenergy, Geothermal
energy and Oce	ean & Tidal energy, artificial photosynthesis.
Unit – 3	Energy Scenario
	in economic development and social transformation: Energy & GDP, GNP and its dynamics.
	Energy Sources and Overall Energy demand and availability, Energy Consumption in various
	changing pattern; Environmental impact of Fossil fuels, Renewable Sources Potential, Energy
	rth, World Energy Scenario, Indian Energy Scenario, India's Solar Energy Mission, Jawaharlal
Unit – 4	Solar Mission(JNNSM).
Unii – 4	Energy Security
Chemical and	Nuclear: Non Proliferation, Energy Security, Energy Consumption and its impact on
	climatic change. Role of renewables in energy security and climate change; International Energy
	Countries, G-20 Countries, OPEC Countries and EU.
Unit – 5	Countries, of 20 countries, of 20 countries and 20.
Text Books	
Text Books	
1. J. M. I	Fowler, Energy and the Environment, McGraw Hill, 2nd Edn, New York, 1984.
	Johannson, H. Kelly, A. K. N. Reddy and R. H. Williams (Ed), Renewable Energy: sources for
	and electricity, Island Press, Washington DC, 1993.
	fie and W.A.Beckmann, Solar Engineering of Thermal Processes-John Wiley (1980)
3. 71.Dui	11 and about many some Engineering of Thermal Processes some whey (1700)
Reference Bool	ks:
	th and I E V raidar Dringinlas of Solar Engineering, McGray, Hill (1079)

- F.Kreith and J.F.Kreider, Principles of Solar Engineering, McGraw-Hill (1978)
- 2. T.N. Veziroglu, Alternative Energy Sources, Vol 5 and 6, McGraw-Hill (1978)

Course Code	Course Title	Course Type	**						Credit
EEN012160	CONTROL LAB	Laboratory	L	0	Т	0	Р	2	1

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

B		
Pre-requisite		onceptofcontrolsystem.
Course Assessment	Methods:	40 marks internal examination & 60 marks external examination
Syllabus Version:	1	
Course Objectives:	Tomakethestude	entfamiliarwithdifferentcontroltechniquesofLTIsystem.
Course Outcomes (Course		pletion of this course, the students shall be able to:
_	iceprovidessiude	entswithcritical practical aspects of electrical and electronic scontrol system engin
eering.		
List of experiment	S	
1. Tostudythe	torque-speed cha	aracteristics, stepresponse andtofindthe transferfunction of the d.c. motors.
	L	racteristicsofad.c.motorangularpositioncontrolsystem.
	imeresponseofva	arietyofsimulatedLinearsystemsandtocorrelatethestudieswiththeor
eticalvalues.		
_		alinearvariabledifferentialtransformer.
		racteristics of an angular
		potentiometers.6. Tostudytheperformanceof varioustype etemperatureofan oven.
		racteristicsofad.c.motorspeedcontrolsystem.
		mulated systemusingan 8-bit microprocessor.
		asynchrotransmitterreceiverpairandusetheseastorque-
	gularerrordetect	
	-	entcascadecompensationnetworks.
ExtraExperiments(b		
1. Tostudythecontrolsystem.	onfigurationande	evaluatetheperformancecharacteristicsofafeedbacklightintensityco
•	erformancechara	acteristicsofananaloguePIDcontrollerusingsimulatedsystems.
Tostudysimp	leinput-	
		ocessorthroughprogrammableperipheralinterface,8255.
		haracteristics of a number of digital to analog converter circuits
_	ICtype AD7533	
	haracteristics of	asmallac servomotoranddetermineitstransferfunction.
Text Books		
Reference Books:		

Course Code		Course Title		Course		Credi					
				Type							t
EEN012180	EL	ECTRICALMACHINESLABOR ATORY		Laboratory	L	0	T	0	P	2	1
Pre-requisite :Theoreticalconceptofelectricalma				II.							
Course Assessment Methods:			40 m	arks internal	exan	ninati	ion &	£ 60	mai	ks e	external

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

			examination
Syllabus Vers	sion:	1	
ofelectrical n	nachines them.Tointro	•	orming experiments related to various types glephaseandthreephaseelectricalmachines&varioustype
			nis course, the students shall be able to:
		ce provides students w	with critical practical aspects of electricalmachines II.
List of experi	iments		
1.	NoLoadan	dBlockedRotortestonat	three-phaseinductionmotor.
2.	TorqueSlip	CharacteristicsofSlipR	RingInductionMotorbyvaryingrotorresistance.
3.	LoadTesto	nthree-phasesquirrel ca	ageInductionMotor.
4.	Measureme	entofDirectAxisandQua	nadratureaxisreactanceofsalient poleSynchronousMachine
5.	Predetermi	nationofVoltageRegula	at ion of Alternator by EMF and MMF methods.
6.	LoadTest o	onthree-phaseInduction	nGenerator.
7.	Vcurveand	InvertedV curveof Syn	nchronousMotor.
Text Books			
Reference Bo	ooks:		

Course Code		Course Title							Cou	se Type			Credit				
EEN012200	PC	POWERELECTRONICSLAB					AB		Lab	oratory	L	0	T	0	P	2	1
Pre-requisite	:Knowledgeof powerelectro					ectron	nics, o	lcanda	emotors.	•	•	•	•				
Course Assessm	urse Assessment Methods:						40	marks	internal	exan	ninati	on &	£ 60) ma	ırks	external	
								exa	minatio	n							
Syllabus Version	n :		1														
Course Objectiv	es :	Γo ha	ave ha	nds-	on e	xpost	are to	opera	ation of	f various j	power	electi	onics	con	verte	rs	
and devices. To					Tole	arndi	agnosi	ngandtesti	ingthec	harac	cterist	icsof	fpowe	er			
converters and verifying the operating principles.																	
Practical Exposure of various motor drives. Speed control techniques in open la						esinopenlo	oopand	close	dloop).							
Course Outcomes (COs): After completion of this course, the students shall be able to:																	

1. Operational steady state characteristic of the various power devices. Operating differentpower

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

converters, checking the waveforms at various test points. Exposure to different schemes of ac and demotorcontrol.

List of experiments

- 1. ObserveandstudyvariousforcedcommutationtechniquesofSCR
 - i. Self-Commutation
 - ii. impulseCommutation

Determinetheaverage output voltageat

- a) constantfrequency, variable dutyratio,
- b) constantdutyratio, variable frequency,
- c) frequencyatwhichcommutationfailsand
- d) deviceandcircuitturn-offtimeineachcommutationtechniquementionedabove.
- 2. Observeandstudyvariousforced commutationtechniquesofSCR
 - i. ResonantCommutation
 - ii. ComplementaryCommutation.

Determinetheaverage output voltageat

- a) constantfrequency, variable dutyratio,
- b) constantdutyratio, variable frequency,
- c) frequencyatwhichcommutationfailsand
- d) deviceand circuit turn-off time in each commutation technique mentioned above.
- 3. Observeandstudyoutputvoltagewaveformof a
 - i. single-phaseFull-wave,fully-controlled AC-DCconverterunderdifferentloadconditions.
 - ii. 3-phasehalfwaveuncontrolledrectifier

Determine the output average voltage, ripple factor and circuit turn-off time. Also check the effect offreewheelingdiode ontheinputpowerfactoroftheconverter.

- 4. Operate Buck DC-DC converter at (a) constant frequency; variable duty ratio and (b) constant duty ratio; variable frequency. Also determine the device and circuit turn-off time.
- 5. Studyand plotthestatic V-I and Transfer characteristics of
 - i. MOSFET
 - ii. IGBT
- 6. Observeandstudyoutputvoltagewaveformof SCRbasedACphase controller.

Text Books			
Reference Books:			

_	<u>ı</u>
_	7
	٩
	<u>b</u>
	7

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

EEN022240	Solar Thermal	Minor Specialization	L	3	T	1	P	0	4
	Technology	course/Departmental							
		Honors Course							
Pre-requisite	:NILL								
Course Assessmen	nt Methods:	40 marks internal examina	ation & 60	0 mark	s exter	nal e	xamina	tion	
Syllabus Version:	1								

Course Objectives:

The course will enable the students to

- 1. understand the solar thermal energy
- 2. temporal and spatial solar radiation resource availability
- 3. understand the basics of solar thermal conversion process
- 4. understand the types of solar thermal conversion systems
- 5. understand design and working of different solar thermal conversion systems

learn about the design procedure

Course Outcomes (COs): After completion of this course, the students shall be able to:

Afterstudyingthecourse, the student will be able to:

- 1. gain complete knowledge of available solar radiation resource,
- 2. explain basics of the process of solar thermal conversion and system design,
- 3. estimate the quantum of radiative and thermal energy flow,
- 4. explain the options to enhance the temperature and efficiency of the systems,
- 5. offer design options for different and niche application and utilizable, and
- 6. undertake system design and sizing.

Unit – 1 Solar Radiation and its Measurement

Introduction, Solar constant, Solar radiation outside the Earth's Atmosphere, Solar radiation at the earth's surface, Solar radiation geometry: Solar angles, day length, angle of incidence on tilted surface; Sun path diagrams. Solar radiation measurements, Sunshine recorder, Pyranometers, Pyrheliometer, Estimation of Average Solar radiation, Solar radiation on tilted Surfaces. Analysis of Indian solar radiation data and applications; Estimation of solar radiation resource based on geospatial data.

Unit – 2 Solar thermal Energy Conversions and Applications and Flat Plate collectors

Solar thermal energy conversion, Physical principles of solar radiation conversion,

Effective energy losses; Thermal analysis; Heat capacity effect; Testing methods; Evacuated tubular collectors; Air flat-plate Collectors: types; Thermal analysis; Selective Surfaces: Ideal coating characteristics; Types and applications; Anti-reflective coating; Preparation and characterization;

Unit – 3 Concentrating Collector Designs

Classification, design and performance parameters; Tracking systems; Compound parabolic concentrators; Parabolic trough concentrators; Concentrators with point focus; Heliostats; Comparison of various designs: Central receiver systems, parabolic trough systems; Solar power plant; Solar furnaces.

Unit – 4 Solar Heating & Cooling System

Liquid based solar heating system: Natural, forced and gravity flow; Solar dryers; Solar distillation/still; Solar cooking; Solar cooling and refrigeration: Vapour absorption refrigeration cycle; Water, ammonia & lithium bromide-water absorption refrigeration systems; Solar operated refrigeration systems; Solar desiccant cooling; Solar passive heating and cooling systems: Trombe wall; Greenhouse technology: Fundamentals, design, modeling and applications.

Unit – 5 Solar Pond and Thermal Energy Storage, Solar thermal energy applications and Design and sizing of solar thermal systems

Solar Pond; Sensible storage; Latent heat storage; Thermo-chemical storage.

Industrial process heat: Temperature requirements, consumption pattern; Applications of solar flat plate water heater & air heater for industrial process heat; Designing thermal storage; Transport of energy.

 $^{\rm age}41$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Performances of solar collectors: ASHRAE code; Modeling of solar thermal system components and simulation; Design and sizing of solar heating systems: f – chart method and utilizability methods of solar thermal system evaluation; Development of computer package for solar heating and cooling applications.

Textbooks

- 1. Goswami D Y, Kreith Frank and Kreider J F, Taylor & Francis (1999); Principles of Solar Engineering, Taylor & Francis, USA
- 2. Sukhatme S P and Nayak J K(2017); Solar Energy, McGrawHill, India

Reference Books:

- 1. Tiwari, G.N (2002); Solar Energy, Fundamentals design, modeling and Apllications, Narosa New Delhi
- 2. Duffie J. A. and W. A. Beckman, (2006); Solar Engineering of Thermal Processes, Johnn Wiley

SEMESTER V

Course Code		Course Title		Course		Co	ontact	Hour	S		Credit
				Type							
EEN013010		POWERSYSTEM ANALYSIS		Theory	L	3	T	0	P	0	3
		ANALISIS									
Pre-requisite	I:	KnowledgeofDifferentialEd	quati	ions,andNumer	ricalAn	alysis					
Course Assessment Methods:				marks intern	al exa	amina	tion	& 6	0 m	arks	external
			examination								
Syllabus Version: 1											

Course Objectives :

- Tounderstandthemathematical modelingofdifferentpower system components.
- Tounderstandthedifferentfaultconditionandtypesoffaults.
- To analyze the severity of the fault and find the fault current which will help to determine the rating ofthecircuitbreaker.
- Toanalyzetheprefault and postfault conditions.
- To study the Z-build algorithm which determines the Z-Bus matrix that is mostly used in contingencyanalysisandfindingthe faultcurrent.
- Load flow analysis determines the voltage angle which in turndetermines the line flow and losses andthe voltage at each bus. Different methods of load flow methods are studied and its advantage and disadvantage are also compared.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Demonstrateanunderstandingofthenatureofthemodernpowersystem, including the behavior of the constituent components and sub-systems.
- $2. \quad Describe the construction, operation and equivalent circuit of transmission line \&\ transformers.$
- 3. Demonstrateanunderstandingofperunitsystemitsadvantagesandapplicationinpowersystem.
- $4. \quad Apply load flow analysis to an electrical power network and interpret the results of the analysis.\\$
- $5. \quad Analyze a network under both balanced and unbalanced fault conditions and interpret the \ results.$

Unit – 1 Introduction topower systemanalysis, perunitsystem.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Representationofpowersystems:One line diagram, impedance & reactancediagrams.Per unit notation selection &changeof baseforperunitquantities.Thevenin'smodelforPowersystem.Introduction to power systemoperationinIndia.Differentoperatingstates.

Unit – 2 **Modeling of Power System Components**

Modelingofmediumandlongtransmissionline. Fixedtapchangingtransformerswithoff-nominal turn's ratio. Modelingof phase shifting transformer. Modellingof equivalent circuit of three winding transformers.

Unit – 3 Load FlowAnalysis

Formation of Y bus matrix.Load flow solution techniques(using bus only) Gauss-Seidel, NewtonRaphson (inpolar coordinates only),Accelerationfactors.Decoupled, fast Decoupledmethod.

Unit – 4 **SymmetricalFaults**

Formation of Z bus matrices, Zbusalgorithm,significanceofSymmetricthreephaseShort circuitcalculationsusingZbus.Symmetrical 3 phase faults: Shortcircuit currents and reactance of Synchronousmachines. Short circuit current calculations ofunloaded&loadedGeneratorsandpowersystems. Selectionofcircuitbreakers,current-limiting reactors. Sequence componentsof line and phase voltages and currents of star-deltatransformerbanks.

Unit – 5 UnsymmetricalFaults

Sequence impedance's and networks of power system elements. Analysis of unsymmetrical faults in generator and powersystemundernoload.

Text Books:

- 1. A Chakraborti & Halder Power System Analysis, Operation & Control, PHI
- 2. Nagrath and Kothari- Modern Power System Analysis (ED.2) TMH, 1989 3...
- 3. Stevenson Elements of Power System Analysis (Ed 3) -MGH, 1975.

Reference Books

- 1. Elgerd OI Power system analysis- TMH.
- 2. Shipley Matrices & Power Systems John Willy.

Course Code	Course Title		Course Type		Contact Hours							
										t		
EEN013030	DIGITALSIGNALPROCE	SSI	Theory	L	3	T	0	P	0	3		
	NG											
Pre-requisite	:Basicsofsignalsandsyst	ems.										
Course Assessmen	nt Methods:	40	marks intern	al exa	minat	ion &	& 60) ma	rks	external		
		exa	mination									
Syllabus Version :	1											

Course Objectives:

- 1. Toprovideanintroductiontodigital signal processing and its significance.
- 2. Studythe processof obtaining digital signals from an alog signals
- ${\it 3.} \quad Understand various signal processing operations on discrete time signals.$
- 4. Studytimedomainandfrequencydomainrepresentationsofdiscretetimesystems.
- 5. Tounderstanddigitalfiltersandtheirdesigningprocess.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Outcomes (COs): After completion of this course, the students shall be able to:

- Developafundamentalunderstandingofdigitalsignalprocessingandtimedomainanalysis ofdiscretetimesystems.
- 2. ApplydiscreteFouriertransformforanalysisofdiscretetimesignalsandsystems.

3. Appl	ydiscreteFouriertransformforanalysisofdiscretetimesignalsandsystems. y z-transform for analysis of discrete time signals and systems.
	gnFIRdigitalfilters.
5. Design	gnIIRdigitalfilters.
Unit – 1	Introduction to digital signal processing and time domain analysis of discrete time systems.
	portance, classification and applications of signal processing. Introduction to digital signal processing, ents, advantages and drawbacks.
	Canalog to digitalsignal and samplingtheorem.
TimedomainA	analysisofDiscrete-time system:-(Output response ofDiscrete-
	m,LinearConvolution,stabilityofDiscrete-timeLTIsystem,CorrelationofDiscrete-TimeSignals)
Unit – 2	Discrete-FourierTransform.
	ertransform(DFT),relationwithDiscretetimeFourierTransform(DTFT)
	ast FourierTransform(FFT).
Unit – 3	Z-transform
Z-Transform(definitionanditsrelationwithDTFT),Existenceof z-transformandregionofconvergence.
InverseZ-trans	sform.
Unit – 4	Introductionto DigitalFilters andFIR filterdesign.
	assificationofdigital filters (FIR and IIR digital filters),
	calfiltercharacteristics.FIRfilterDesignusingFouriermethod.FIRfilterdesigningusingandwindowin cFIRdigitalfilterstructures.
Unit – 5	IIRDigital Filter Design
Introductionto	IIR filterdesign, Analoglowpass Butterworth filter/Chebyschev filtercharacteristics.
Frequencytrar	sformationin analogdomain(analoglowpasstohighpass, bandpassand band stop).
	sformationfromanalogtodigital domain:Impulseinvariant transformation(IIT)method/bilinear
transformation	
	alfilter structures.
Text Books	
1. Digit	alSignal Processing–JohnProkais
2. Digit	alSignal Processing–Sanjit.K.Mitra
Reference Bo	oks:
1. Digit	al Signal Processing-RameshBabu, SCITechPublishers

Course Code	Course	Course Type		C	ontact I	Hours			Credit
	Title								
EEN013050	ELECTRI	Theory	L	3	T	0	P	0	3
	CAL								
	DRIVES								
Pre-requisite		Understanding of basics of various types of electric motors, drive							
	systems, a	systems, and knowledge ofpower electronics circuits.							

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Assessment Methods: 40 marks internal examination & 60 marks external examination Syllabus Version: Course Objectives: This course focuses on the fundamental of electrical drives and its dynamics and control;selection of motor rating; starting, braking, transient operation, and speed control of dc motor and inductionmotor. This also deals with imparting education in the field of electrical machines, drives, and to some extentof power electronics. The course also emphasizes on modelling and analysis of conventional and advancedelectrical drives. Course Outcomes (COs): After completion of this course, the students shall be able to: 1. Evaluatethethermal model ofelectricmotorsandanalysistheclosedloopcontrolofelectricdrives. 2. Analyzetheperformancecharacteristicsofdcmotordrivesundersteady-stateandtransientconditions. 3. Designofvarious drive components/systems and methods for control the speed of dcmotor drives. 4. Analyzetheperformancecharacteristicsofacmotordrivesundersteady-stateandtransientconditions. 5. Illustrate the vector controlled induction motor using different reference frames, namely- stator, rotorandsynchronousrotatingreferenceframes. Unit - 1**ElectricDrivesRatings** Advantages of Electric drives, Factors affecting the choice of electric drives, Methods of closed loop control of drives, Selection of motor power rating. Thermal model of motor forheatingandcooling, classes of motorduty, determination of motor rating, equivalentcurrent,torqueandpowermethods,short timeduty,intermittentduty. Unit - 2**DC Motor Drives** Performance characteristics ofdcseries, shuntandcompoundmotors, Braking-Regenerative, dynamican dplugging. Transient analysis of separately excited motor with armature voltage control, Starting, dynamic braking and energy loss. Unit - 3**Speed Control of D.C. Drives** Armaturevoltagecontrol, Flux control, Armatureresistancecontrol. Methods of speed control of singlephaseandthreephaseconverter fed separatelyexciteddcmotor(Block diagram approachonly), Speedcontrolofchopper fed dcmotor(Blockdiagramapproach only). Fourquadrant dc drive. Unit - 4**AC MotorDrives** Inductionmotordrive:Performance characteristics of squirrel cageandslipringinductionmotors, Braking-Regenerative, Dynamicand Plugging, Transientanalysis-Startingand Plugging, Calculation of energy loss. Speedcontrol-Statorvoltagecontrol, Slippower recovery, E/f, V/fandfluxweakening methods. Unit - 5**Basics of Vector Control** Vectorcontrolledinductionmotordrives:Introduction,principleofvectorcontrol. Text Books 1. Fundamentals of Electric Drives by G.K. Dubey, NAROSA, 1995. 2. ElectricMotorDrives:Modeling, Analysis, and Controlby R. Krishnan, Pearson Education, 2006.

Reference Books:

- 1. FirstCourseonElectricDrivesbyS.K.Pillai,WileyEastern,1990.
- 2. PowerElectronicControlACMotorsbyJ.M.D.Murphy&F.G.Turnbull,PergamonPress,1988.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Code	Course Title	Course Type		Co	ontact	Hours	3		Credit
EEN013070	MEASUREMENT	Theory	L	3	Т	0	P	0	3
EETTOTSOTO	AND	Interior			1		•		
	INSTRUMENTATI ON								
Pre-requisite	:Knowledgeofbasic	circuittheory.							
Course Assessment Me	thods: 40) marks internal ex	aminatio	n & 6	0 mark	s exte	ernal e	xamin	ation
Syllabus Version :	1								
Course Objectives :									
	nitsofmeasurementsand umentsformeasurement					anical	indica	ting	
_	surementofresistance,in	•	•			oridge	circui	ts.	
,	ferfunctionandcontrolle	•		Ü		Č			
4. Familiarization and performanc	with root locus technicedetermination	ques and frequenc	y domai	n anal	ysis fo	or stal	oility		
Course Outcomes (COs	s): After completion of								
	ingprinciplesofelectron fvoltage,current,power		ıganddıg	ıtalıns	trume	nts			for
2. Analyse the m	neasurement of resistan	ce, inductance and							
	y the appropriate bridge				ance,i	nduct	ancear	nd cap	acitance.
	lysisofsignalgenerators nmarizetheimportantfe								
5. Testanddeterm	ninethespecificationofag	givensignalthrough							
	CRO)andwaveanalyzers								
Unit – 1 Electro	omechanical indicatin	gand Digital Insti	uments						
Thefundamentalunitsof		versionfactors.Erro		inition					urement.
TheD'ArsonvalGalvano		operationandusea							deaabout
instruments withnon-life rectifier-type instrumen		nd three-phase		nergy					gymeter; netersand
multimeters.		-							
Unit – 2 Mea	surementof resistance	e, inductance and	capacita	ance					
Classificationofresistan	ce; Wheatstone bridge	e(W.B.),limitations	ofW.B.,	Kelvi	n's do	ubleb	ridge.	Conce	ptofearth
resistance anditsmeasur								•	•
Unit – 3	ignal generator& Inst	rumenttransform	er.						
Fixed and variable, AF	oscillators,								
standardandAFsineands	squarewavesignalgener	ators,functionGene	erators,sc	quarep	ulse, ra	andon	nnoise	and	
sweep.Currenttransforn	ner(CT)andpotentialtra	nsformer(PT);cons	tructiona	ındope	ration	forme	tering	andpro	otection
applications;Silsbee'sm									
Unit – 4 T	ransducers								
Introduction and classif					т				. ,
diaphragms,bourdon to type temperature	ibes and piezo- electri sensors esp. platir						e sense and		sistance- locouple-
properties,materialsuse		reference junct							Current,
voltage,andtorquetranso	ducers.								
Unit – 5	CathodeRay Tube(CRT	()and WaveAnaly	zer						

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Construction, working and general applications. Measurement of voltage, current, phase and frequency (using Lissajouspatterns)onaCRO.Introduction and qualitative treatment of frequencyselective wave analyzer and heterodyne waveanalyzer; discussions on basicspectrumanalyzer. Data acquisition system, including the concept of virtual instrumentation.

Text Books:

- 1. CooperW.O.andHelfrickA.D.-ModernElectronic InstrumentationandMeasurementTechniques.
- 2. A K. Sawhney A course in electrical and electronic Measurements and Instrumentation.

Reference Books:

1. E.W.Golding&F.C. Widdis-ElectricalMeasurementsandMeasuringInstruments.

Course Code	Course Title	Course Type	Contact Hours Cr								
EEN083110	Basics of Solar Energy Engineering	rgy									
Pre-requisite	:NILL										
Course Assessme	ourse Assessment Methods: 40 marks internal examination & 60 marks external examination										
Syllabus Version	: 1										

Course Objectives:
The course will enable the students to

- 1. understand importance of solar energy
- 2. understand the basics of solar radiation resource availability
- 3. understand different routes of solar energy conversion and their importance
- 4. understand the basics of photothermal, photovoltaic, and photocatalytic conversion and applications
- 5. know the different photothermal systems and their applications
- 6. understand the basics of solar photovoltaics, cells, and panels

Learn about the design aspects of solar photovoltaic systems and power plants

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. explain solar energy resource and different conversion routes
- 2. explain the basics of solar thermal conversion, applications and systems
- 3. explain the basic design and working of solar cell, panels and plants
- 4. explain the photocatalytic conversion systems and potential applications.
- 5. compare different solar systems in terms of economic and financial viability.

Unit – 1	Importance of Solar Energy:
Clean fuel: Hvd	rogen as clean fuel; Carbon mitigation potential; Hydrogen Economy
Unit – 2	Estimation and measurement of available Solar Radiation:
Pyranometer ar	, Extra-terrestrial and terrestrial solar radiation availability; Measuring instruments – ad pyrheliometer; Available solar energy and its dependence on season, location, tilt and alysis of Indian solar radiation data

Unit -3 Solar thermal conversion, applications, and systems:

Basics, Flat plate collectors-liquid and air type. Theory of flat plate collectors, selective coatings, advanced collectors, Concentrators: optical design of concentrators, solar water heaters, solar dryers, solar stills, solar cooling and refrigeration. Thermal storage, Active and passive conditioning of buildings. Conversion of heat

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

into mechanical energy, Solar thermal power generation.

Unit – 4 Solar Photovoltaic conversion, applications, and design:

principle of photovoltaic conversion of solar energy. Technology for fabrication of photovoltaic devices. Applications of solar cells in PV power generation systems. New generation solar cells and emerging technologies.

Unit – 5 **Solar Photocatalysis and Economics of solar systems**

Mechanism; Kinetics; Nano-catalysts: System design; Performance parameters; Applications. Comparison of economics of different routes of solar energy conversion

Text Books

- 2. J K Nayak and S.P. Sukhatme(2009), Solar Energy: principles of Thermal Collection and Storage, The McGraw-Hill, 2009
- 3. J. A. Duffie and W. A. Beckman; Solar Engineering of Thermal Processes, John Wiley 2013
- 4. Green, Martin (2005), 3rd Generation Photovoltaics: Advance Solar Energy, Springer
- 5. Goswami D Y, Frank Kreith and J F Kreider, Taylor & Francis (1999); Principles of Solar Engineering, Taylor & Francis, USA

Reference Books:

- 1. Garg H.P. and Prakash S (1997); Solar Energy: Fundamental and Application Tata McGrow-Hill, New Delhi
- 2. Kreith F. and J. F. Kreider, (1978); Principles of Solar Engineering, McGraw-Hil, 1978
- 3. Kreider J.F. and F. Kreith, (1981); Solar Energy Handbook McGraw-Hill, 1981Bent Sorensen; Renewable Energy, Academic press, New York., 2000

Course		Cour	rse Title	Course		Coı	ntac	t Ho	urs		Credi
Code				Туре							t
EEN01313	MEASU	REMENTANDI	NSTRUMENTATION	Laborator	L	0	T	0	P	2	1
0		LA	В	у							
Pre-requisite	:Tl	neoreticalconcep	tofmeasurementandinstrumen	•					•		
Course Asse	ssment Met	thods:	40 marks internal examina	ntion & 60 ma	arks	exte	ernal	exa	mir	natic	n
Syllabus Ver	sion:	1	•								

Course Objectives:

To provide facilities in performing experiments related to various types of electrical and electronicmeasurement devices and analyzing it.

Course Outcomes (COs): After completion of this course, the students shall be able to: Suchhands - on experience provides students with critical practical aspects of an alogand digital electronic measurement.

List of experiments

- 1. Measurement ofinductance by
 - a. MaxwellInductanceCapacitanceBridgeand
 - b. AndersonsBridge.
- 2. MeasurementofcapacitancebyScheringBridge.
 - (a) Measurement of medium resistance (Wheatstone bridge).
 - (b) Measurement of low resistance (Kelvindouble bridge).
- 3. Adjustmentandcalibrationofsingle-phaseenergymeter.
- 4. Adjustmentandcalibrationofthreephaseenergymeter.

 $_{\mathrm{Page}}48$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 5. ADC-Measurementofconversiontimeandquantizationerror.
- 6. DAC-Unipolarandbipolarconnections, measurement of accuracy.
- 7. TomeasurethevoltageusingPiezo-electrictransducer.
- 8. Tomeasurepressureintermsof voltageusingapressuretransducermodule.
- 9. Measurementsusingordinarydualtraceoscilloscope
- 10. To measure the Young's modulus using Cantilever beam instrument and also real time implementation in Lab View.

11. Tom	neasuretheHall volta	ageandcurrent usi	ingHallEffectTrans	sducertrainer.		
Text Books						
Reference Bo	ooks:					
	T	G Tivi		C	G II	0 1

Course		Course Title		Course		Co	ntac	t Ho	urs		Credi
Code				Туре							t
EEN01315		ADVANCE		Laborator	L	0	T	0	P	2	1
0	PO	WERELECTRONICSANDDRIVESLA B		у							
Pre-requisite		:Knowledgeof powerelectronics, dcand	lacmote	ors.							
Course Asses	sment	Methods:	40 1	marks interna	al e	xan	inat	ion	&	60	marks
			exter	nal examinati	on						
C 11 1 T7		1									

Syllabus Version:

Course Objectives:

To have hands-on exposure to operation of various power electronics converters and devices. Tolearndiagnosingandtestingthecharacteristicsofpower converters and verifying the operating principles. Practical Exposure of various motor drives. Speed control techniques in open loop and closed loop.

Course Outcomes (COs): After completion of this course, the students shall be able to:

Operational steady state characteristic of the various power devices. Operating differentpower converters, checking the waveforms at various test points. Exposure to different schemes of ac and demotorcontrol. Exposure to different schemes of ac and demotorcontrol. Exposure to different schemes of ac and demotorcontrol operations action of the various power devices.

List of experiments

- Speed control of 3-phase squirrel cage induction motor by voltage control and voltage frequency controlbyV/F method(byusingdigital/Analogkeypad ofPWMbased ACmotordrive system).
- 2. StudyofIGBT based3-phase ACmotordrive.
- 3. StudyofPhaseControlledRectifiedDCMotorDriveusingaFullConverter
- 4. StudyofChopper ControlledDCMotorDrive
- 5. Construct a 3-phase VSI (Voltage Source Inverter) in either 180-degree or 120-degree conduction modeinMATLAB/SimulinkPlatform.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

6. Toden	nonstratethespeedc	ontrolofDCmotorinMAT	LAB/Sim	nulinkP	Platforr	n.			
Text Books									
Reference Books									
Reference Books	•								
Course Code	Course Title	Course Type		Co	ontact l	Hours			Credit
EEN023190	Solar PV	Theory	L	3	Т	0	P	0	3
EEI1023170	Technology	Theory	L		1	Ů	•		3
Pre-requisite	:NILL								
Course Assessme	nt Methods: 4	0 marks internal examina	ation & 6	0 mark	s exte	rnal e	xamina	ation	
Syllabus Version	: 1								
1. understa 2. understa 3. Understa 4. learn the 5. understa 6. learn ho 7. potential	nable the students and semiconductor and the fundamenta and characterization manufacturing of and the major common to design of solal & drawbacks of common to the state of the students of th	physics relevant to photo al of solar cells on techniques for solar cell solar cells mercial and developing te	lls chnologi chnologi	es for s					
		solar PV technologies ar	e current	lv on t	he mar	ket			
3. Gain coi	mplete knowledge	about solar PV system de	esign	•					
	and the economic a Solar Cell Basics	and environmental issues	relevant	to pho	tovolta	ic sys	tem		
Properties of Seconductivity; Ferprocess	miconductor: Intri rmi energy level;	nsic, extrinsic and com Carrier transport: Drift,							
Unit – 2	Solar Cell Physic	S							
characteristics; I recombination, so next generation so	Figure of merits eries and shunt res	ojunctions, Metal-semi- of solar cell; Efficien sistance, Introduction to	cy limits	s. Los	s med	hanis	ms fo	r real	diodes,
Unit – 3	Material Fabrica	tion Technologies							
Czokralski (CZ)	and Float Zone (F	tronic and solar grade FZ) method, MBE, MOC al, spray pyrolisis, and so	CVD, LP	E, VPI					

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 4 Solar Cell Fabrication Technology

Device Fabrication, Doping, alloying, diffusion and implantation, Procedure of masking, photolithography and etching, Device processing methods, Deposition of anti-reflection coatings, Dry and wet etching. Surface texturing and passivation techniques. Design of a complete silicon, GaAs, CdS, CdTe, InP solar cell; High efficiency III-V, II-VI multijunction solar cell; a-Si-H based solar cells; PV Module fabrication, Quantum well solar cell, Organic solar cells, Thermo-photovoltaic, Photovoltaic; Thermal(PV/T) hybrid systems.

Unit – 5 **Solar Photovoltaic System Design**

Solar cell array system analysis and performance prediction; Shadow analysis: Reliability; Solar cell array design concepts; PV system design; Design process and optimization; Detailed array design; Storage autonomy; Voltage regulation; Maximum tracking; Use of computers in array design; Quick sizing method; Array protection and trouble shooting. Understand the economic and environmental issues relevant to photovoltaic systems, cost calculation, environmental impact, and energy payback time of a photovoltaic system.

Unit – 6 **PV Power Systems**

Centralized and decentralized SPV systems, Stand alone, hybrid and, grid connected system, System installation, Operation and Maintenance, Application of PV for lighting, Water pumping. Refrigeration, Telecommunication, Cathodic Protection etc., Solar PV Power Plant-Status-Case Studies, Hybridization Engineering, Hybrid systems, Grid integration. Building Integrated PV Systems, PV market analysis and Economics of SPV systems

Text Books

- 1. J. Nelson, Physics of Solar Cells, Imperial College Press, 2003.
- 2. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, Englewood Cliffs, N.J.; Sydney: Prentice Hall, 1992.
- 3. P. Wurfel. Physics of Solar Cells: From Basic Principles to Advanced Concepts
- 4. C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, PHI Learning Pvt. Ltd., 2016.
- 5. S. R Wenham, M. A Green, M.1 E Watt, R. Corkish, Applied Photovoltaics, Routledge; 2nd Ed edition, 2006
- 6. T. Bhattacharya, Terrestrial Solar Photovoltaic, Narosa Publishers Ltd, New Delhi, 1998

Reference Books:

- 1. L. Fahrenbruch, and R. H. Bube, Fundamentals of Solar Cells: PV Solar Energy Conversion, Academic Press, New York, 1983.
- 2. L. D Partain (ed.), Solar Cells and their Applications, John Wiley and Sons, Inc, New York, 1995.
- 3. H S Rauschenbach, Solar Cell Array Design Handbook, , Van Nostrand Reinfold, Company, New York, 1980

Course Code	Course Title	Course Type		Со	ntact I	Iours			Credit	
EEN023210	Solar PV Technology Lab.	Laboratory	L	0	T	0	P	2	1	
Pre-requisite	:NILL									
Course Assessme	nt Methods:	40 marks internal examina	ation & 6	0 mark	s exter	nal e	xamina	ition		
Syllabus Version	: 1									
	Course Objectives: The objective of this lab. is to provide hands- on training on solar cells characterization and Solar PV System									

design.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Hands-on laboratory sessions explore how a solar cell works in practice.
- 2. Students will visualized solar cell fundamentals
- 3. Students will able to design solar PV system by its own.
- 4. Students will acquire skills in Solar PV installation.
- 5. Students will apply this knowledge towards developing a real project.

List of experiments

- 1. Dark and illuminated *I-V* characteristics of a solar cells varying light intensity
- 2. I-V and P-V characteristics of PV module with varying radiation and temperature levels
- 3. *I-V* and *P-V* characteristics of series and parallel connected PV modules
- 4. Effect of variation in Tilt angle on PV module power
- 5. Demonstration of the Effect of shading on PV module output power
- 6. demonstrate the working of diode as bypass diode and blocking diode
- 7. Solar cell design using PC1D simulation software
- 8. Solar PV system design using PV syst software
- 9. Workout power flow calculations of stand alone PV system of DC load with battery
- 10. Workout power flow calculations of stand-alone PV system of AC load with battery.
- 11. Workout power flow calculations of stand-alone PV system of DC and AC load with battery
- 12. Carrier lifetime measurement for a solar cell
- 13. Spectral response measurement of solar cells
- 14. To draw the charging and discharging characteristics of the battery
- 15. Fabrication and characterization of Dye-sensitized solar cells
- 16. Fabrication and characterization of new generation solar cells
- 17. Solar cell simulation using software (SEQUEL)

Text Books

- 1. M. Green, Solar Cells: Operating Principles Technology (The Red Book), UNSW Photovoltaics.
- 2. P. Wurfel. Physics of Solar Cells: From Basic Principles to Advanced Concepts.

Reference Books:

1. C. S. Solanki, Solar photovoltaic technology and systems: a manual for technicians, trainers and engineers, PHI Learning Pvt. Ltd., 2013

SEMESTER VI

Course Code		Course Title		Course		Co	ontact	Hou	rs.		Credi
				Type							t
EEN013020	ST	POWERSYSTEM ABILITY,OPERATION&CO ROL	NT	Theory	L	0	T	0	P	3	3
Pre-requisite		: Knowledgeof PowerSyster	mAn	alysis.							
Course Assessme	ent M	lethods :		marks internation	al exa	minat	ion d	& 60) ma	rks e	external

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Syllabus Version:

| 1

Course Objectives:

- 1. Tounderstandthedifferentoperatingstatesofpowersystem.
- 2. Tounderstandtheautomaticfrequencycontrolofsingleareaandmulti areasystem
- 3. Tounderstandthevoltagecontrolstrategiespracticedinpowersystem
- 4. Differentstabilityissuesanditscontrol measuresisalsotaught.
- 5. Differentelectricitymarketmodelsandmarketstructuresisalsoexplained.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Gainknowledgeondifferentoperatingstatesofpowersystem.
- 2. Evaluate the operational constraints (equipment and stability), control objectives and their
- 3. Analysethedifferenttechniquesoffrequencyandvoltagecontrol inpowersystem.
- 4. Powersystemstabilityisanimportantissueafterthiscoursethestudentsgetaclearpictureaboutthedifferentstabilityissuesinpowersystemandthecontrolmeasurestomakethegrid stable.
- 5. Theacquirethebasicknowledgeondifferentelectricitymarket modelspracticedalloverthe world.

Unit - 1

Introduction to power system operation, ALFC.

IntroductiontopowersystemoperationinIndia. Different

 $operating states. Introduction, Speedgoverning system and modelling. Turbine\ modelling,\ Generator-normalization and the state of th$

loadmodelling. Steady-state and dynamic response of ALFC loop. The secondary ALFC loop,

Integralcontrol.Introduction, Pool operation, Twoareasystems, Modelingof tie line.Static and dynamic response of twoareasystem, Tie-linebiascontrol, Tie-linecontrol,

Digital electrohydraulic (DEH) control system, Implementation of DEH system.

Unit – 2

Excitation system and Voltage control

Introduction, Methods of voltage control. Power capacitors and its application to distribution and transmission system. Static varsy stem. Introduction, Elements of an excitation system. Types of excitation system. Digital excitation system.

Unit – 3

Power system security

Introduction, Factors affectingpower systemsecurity. Introduction to contingency analysis.

Unit – 4

Electricity market structure

Introduction, Regulationvs. Deregulation, Competitive Market for

Generation. The Advantages of Competitive Generation, Electric Supply Industry Structure Under Deregulation in India. Restructuring Models.

Unit – 5

Power System Stablility

IntroductiontoPowersystemStabilityclassification.Small signal and Transient stability,Rotorangle &VoltageStability.Stabilityproblem,swingequationanditsnumericalsolution.Determination of initial state in amulti-machinesystem,BasecaseYBUSandmodifiedYBUS,Computationalalgorithm, Improvementofstability.

Text Books

- 1. ElectricEnergySystemsTheoryanIntroduction-OlleI.Elgerd
- 2. Power GenerationOperationandControl-A.J.Wood,B.F.Wollenberg
- 3. Power SystemDeregulationbyLoiLeiLai

Reference Books:

- 1. Power SystemStabilityandControl-P. Kundur
- 2. ElectricPower DistributionSystemEngineering-T.Goneen

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 3. Power SystemAnalysis– Grainger & Stevenson
- $4.\ Power System Analysis, Operation \& Control-Chakraborti \& Haldar$

C		Course	T141-	C		Cont	-4 T	·		C 1:			
Course Code		Course	: Title	Cours e Type		Cont	ici F	ours		Credi t			
EEN01304	MICROPE	OCESSOR AND	MICROCONTROLL	Theor	L	3 7	Γ () P	0	3			
0	WICKOT	ER	WICKOCONTROLL	у									
Pre-requisite	:Bas	sicsofcomputerand	lprogramming.	•									
Course Asses	sment Metho	ods:	40 marks internal examina	ition & 60	mar	ks ex	erna	l exa	mina	ation			
Syllabus Vers	sion:	1											
Course Object	ctives :												
1. Totea	achthebasico	f8085architecture	andassemblyprogramming.										
2. Totea	achtheinterfa	cingof8085 withn	nemorydevicesandperipheral	ls.									
3. Totea	achthebasico	f 8051 microcontro	ollers										
Course Outco	omes (COs):	After completion	of this course, the students s	hall be ab	le to	:							
1. Solve	edifferentpro	blemswithprogram	ms.										
2. Tobe	abletointerfa	cedevicestomicro	processor.										
			olleranditsapplications										
Unit – 1	<u> </u>												
T . 1	3.61), (), (), (), (), ()	TT 4 1 1.		α:							
			,MemoryMapping.8085 CP										
descriptions,8	descriptions,8085 system,8085 Instruction Set, addressingmodes, Programming using 8085 Instructionset, '												
Unit – 2													
			Latches,74LS138,74LS245,										
HardwareInte	erfacing-inter	facingmemory,In	terfacingI/O:Memorymappe	dandI/OM	Iapp	ed							
Unit – 3													
Instructioncy	cle,Machined	vcles, Timingdiag	grams.8085Interruptssystem.	Stackmen	norv	opera	ions	,call					
returninstruct		, , ,	1 7		,	•		,					
Unit – 4													
InterfacingAI	DCAD558an	dInterfacingDAC	usingstatuscheckwith 8085.1	Peripheral	s:Pro	ogram	mab	le PF	PΙ				
			oduction to DMA with relev	ance to 80)85C	PU.							
	ese periphera	als to 8085 CPU a	andtheirapplications.										
Unit – 5													
Introduction t	to Micro con	troller architecture	e:8051microcontrollersArch	itecture.N	lemo	rvado	ress	ing.					
			programming, Timer/Counter						ramn	ning			
Text Book:													
1	Ramesh S	. Gaonkar- micro	processor Architecture, Prog	gramming									
	andApplic	cations with 8085/	8080A(Third Edition)– Peni	ramInterna	ation	al							
2	The8051N	Microcontroller&I	EmbeddedSystems-M.AliMa	azidi-LPE	edit	ion							
1													

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Type

Credit

Contact Hours

Reference Books:

Course Code

1. FundamentalsofMicroprocessors-B.Ram, DhanpatRai

Course Title

- 2. Intel-C.H.Embedded ControllerHandbookVol-I8 bit -IntelCorporation,1988.
- 3. WiatrowskiCandHouseC.H.-LogicCircuitsandMicrocomputer SystemsMGH,1980.

Course Code		Course Title		Course Type		C	macı	Hour	. 5		Credit
EEN013060	ADV	ANCEDCONTROLTHEO	RY	Theory	L	3	Т	0	P	0	3
Pre-requisite	:]	KnowledgeofLinearContro	olSys	tem.							L
Course Assessme	nt Metl	nods:	40	marks interr	nal ex	amina	tion	& 6	0 ma	ırks	external
			exa	mination							
Syllabus Version	:	1									
Course Objective								0			G . 1
		eistoprovideanintroduction									Control
		f transfer function model									
	ransfer	function model for the sy	ysten	n design. Stud	yofno	n-linea	rsyste	ms aı	nd dis	screte	domain
systems.											
		: After completion of this			shall	be able	e to:				
 Todesign 	anyph	ysicalsysteminstate spaced	loma	in.							
2. Toanalys	e thesta	abilitycriterion ofany syste	min	statespace							
3. Tomodel	and cor	ntrolanynon-linearsystem									
		trollable andobservablesy	stem								
		ntrolanydiscretesystem									
2. 101110 3.		in clain, and closed profits									
Unit – 1	StateS	paceAnalysis									
		ace Analysis,ConceptofSt									
systems, Realiz		of statemodelsfromtrar								sition	Matrix,
	Casc	adeDecomposition,Paralle	elDec	composition,Ca	iyley-	Hamilt	onthe	orem.			
Unit – 2	Stabili	ty in state space									
		1 111 7 7 1									
		bility,Lyapunovfirstmetho									
stability,Lyapuno	vstabili	tytheorem,LyapunovKraso	ovski	1 stability theo	rem, \	/arıable	eGrad	1entN	lethoc	1.	
Unit – 3	Non-L	inear System									
Common Dhyging	Monli	nearities,Derivation		of		dagan	ribing			£	unction
		scribingfunctionforrelays,	نسه ٦		.if.				ا ما ما		
hysteresis,	onorae	scribing function for leays,	Den	vationordescri	mgru	пспош	011612	iyswii	mueac		e and tability
	hingEn	unations Dagiaconcents of D	hogol	DlanaMathad (lingula.	maint	a Dha	actroi	aatam		naomiy
Unit – 4		inctions, Basicconcepts of P			singuia	ırpomı	s,Pna	setraje	ectory		
Unit – 4	Evalu	ationof Controllability a	na O	bservability							
Controllabilitycri	terionC	Gilbert'stest, Kalman'stest,	Facto	or'scancellation	1 testa	nd PBI	H test.	. Obse	ervabi	lity	
criterionGilbert's	test,Kal	lman'stest, Factor'scancell	latior	ntestandPBHte	st.						
Unit – 5	Digita	l Control System									
Ideal sampler, san	npling	process,Shannon's samplin	ng th	eorem, Z trans	fer fur	ection,	Jury's	Stabi	lity cı	riterio	on
Text Books											
TEXT DOOKS											

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 1. K.Ogata-ModemControlEngineering(ED.2)-PHI, 1995.
- 2. KOgata-StateSpaceAnalysisofControlSystems-PHI, 1967.

Reference Books:

- 1. M.Gopal-Digital Controlengineering-WileyEastern,1988.
- 2. CharlesLPhillipsand RoyeeD. Harbor-Feed BackControlsystems(ED.2)-PHI,1991

Course Code	Course Title	Course Type		C	ontact 1	Hours			Credit
EEN073200	SMARTGRID	Theory	L	3	T	0	P	0	3
Pre-requisite	and renewableen		•						
Course Assessmen	t Methods : 4	0 marks internal exa	mination	& 60 m	narks e	xterna	l exam	ination	
Syllabus Version:	1								
2. Tounderst 3. Tounderst 4. Identifydi Course Outcomes 1. Developat 2. Learndiffe 3. Learnthep 4. Developbe 5. Conductpe Unit - 1 I	cethefundamental cortandvarioustechnologicandmicrogridandits of ferenttools andappro (COs): After completionsic understandingofferentcommunication, nowerelectronics and ensicunderstandingoffer formance and stability introduction to Smart dattributes, comparisons smart grid system. Sn	esinvolvedinsmartgi perationandcontrol. aches tomodellingas on of this course, the theelementsandstruc neasurementandcont nergystoragetechnolo icrogrid,itsoperation yanalysisofsmart gri tt Grid nwithconventionalp	e students tureofsmandecontrol technologiesused andcontrol dandcase	d s shall b art grid. logiesu linsmart ol. studieso	sedinsi grid.	nartgr t grid.		an pow	ver
Unit – 2	Communication, Me	asurement andcont	rol Tech	nologie	sin Sm	artGi	rid		
AdvancedMetering MeasurementUnit(annels, hnologiesSensing,mog Infrastructure(AMI)a PMU),SCADAand Wology,artificialintellige Power Electronicsan	nd /AMSsystem,Demar enceand machinelear	dsideinte ningforSi	utomati Auto gration martgrio	iontech omated . Geog dapplic	molog Meter raphic ations	ies: Readin cal Info	Sma g(AMI	cturesand artMeters, R),Phasor anSystem,
Roleofpowerelectr Advantagesandcha	onicsin smartgrio llengesofdifferent ene	danditsapplications.I ergystoragesystems.	energysto	oragesys	stems,	a	pplicat	ionsins	martgrid.
Unit – 4	MicroGrid								
islandedoperation,	ts, distributedgenerati synchronousandasync	hronousoperation.							
Unit – 5	Operation &Contro	olconcepts inSmart	grid and	case sti	ıdies o	fsmar	t grid.		
stabilityanalysis,ec	ndflow,optimal load floonomicdispatch,self-loofsmartgridandpracti	nealing,resilienceand	lreliabilit		study a	nd			

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Text Books

- AliKeyhani, "DesignofSmartPowerGridRenewableEnergySystems", JohnWiley&Sons, IEEEPress 2011.
- 2. JamesMomoh, "SmartGrid-FundamentalsofDesignandAnalysis", JohnWiley&Sons, IEEEPress 2012.

Reference Books:

1. JanakaEkanayake, N. Jenkins, K. Liyanage, J. Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley

Course Code	Course Title			Course Type		Co	ntact	Hou	ırs		Credit
EEN073240	INT		CTION TO HYBRIED TRIC VECHILE	Theory	L	3	T	0	P	0	3
Pre-requisite	us types of electricuits.	tric 1	noto	rs, d	rive	syste	ems,	battery			
Course Assessment Methods: 40 marks internal examination & 60 marks external examination											
Syllabus Version: 1											

Course Objectives:

This course introduces the fundamental concepts, principles, analysis and design of hybridand electric vehicles. The course goes deeper into the various aspects of hybrid and electric drive train such as their configuration, types of electric machines that can be used, energy storage devices, etc. Each topic will be developed in logical progression with up-to-date information. A number of chosen problems will be solved to illustrate the concepts clearly. The reshall be a suite of exercises based on MATLAB and Simulink.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- $1. \ Illustrate the block diagram to understand the fundamental so felectric and hybrid drive trains.$
- 2. Analyzevariousdrive-traintopologiesviz., hybridandelectric.
- 3. Designofvarious drive components/systems and methods for control the speed of electric and
- 4. Analyzethepowerflowcontrol inhybridandelectricvehiclestopologies.
- 5. Evaluateofelectricpropulsionunitperformanceandsizingofdrivesystem.

Unit – 1 Introductionto HybridElectricVehicles

Historyofhybridandelectricvehicles, social and environmentalimportance of hybrid and electricvehicles, impact of modern drive-trainson energy supplies.

Unit – 2 Conventional Vehicles

Conventional Vehicles: Basics ofvehicleperformance, vehiclepowersource characterization, transmission characteristics, and mathematical models to describe vehicle performance.

Unit – 3 **HybridElectricDrive-trains**

Basicconceptofhybridtraction,introductiontovarioushybriddrive-traintopologies,powerflowcontrolinhybrid drive-train topologies, fuelefficiencyanalysis.Introductionto electriccomponentsusedinhybrid and electric vehicles, ConfigurationandcontrolofDC Motordrives,Configurationand

controlofInductionMotordrives.Configurationand control of Permanent Magnet

Motordrives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency. Basic concept of electric traction, introduction to various electric drive-train topologies, powerflow control in electric drive-train topologies, fuel efficiency analysis.

Unit – 4	ElectricPropulsionu	ınit
----------	---------------------	------

Introductiontoelectriccomponentsusedinhybridand electric vehicles, Configuration and control of

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

		controlofInductionMo							ntMagn
Unit – 5	Sizing thedrives	ontrolofSwitchRelucta vstem	ince Motordi	rives,ar	ivesysi	emen	icienc	<i>y</i> .	
	Sizing theurives	y stem							
Matchingtheelect				nalcom			engi	ne	(ICE),
	ionmotor,sizingth			tronics.				151 4	the
	nnology,Commur ofaBatteryElectric	nications,supportingsu	bsystems.Ca	aseStud	ies:Des	signof	aHybr	aElect	ric Vehic
Text Books	лаванет увлеенте	venicie(BE v).							
TOM BOOKS									
1 Mehrda	IEheani VimiGao	,SebastianE.Gay,AliE	madi Moder	nElectr	ic Hyb	ridEle	etricar	dFuel	CellVe
		oryand Design, CRCF		пысси	10,11y0	IIGLIC	cuicai	iai acio	Jen ve
	,	, ,	,						
Reference Books	:								
1. IqbalHu	ssein,ElectricandI	HybridVehicles:Design	nFundament	als,CR	CPress	,2003.			
-		ry,ElectricVehicleTec							
Course Code	Course Title	Course Type		Co	ontact I	Jours			Credit
				_			_		
EEN073220	Bio-Energy Systems	Theory	L	2	T	1	P	0	3
Pre-requisite	:NILL								
Course Assessme	ent Methods :	40 marks internal exa	mination &	60 mar	ks exte	ernal e	xamin	ation	
Syllabus Version									
Course Objective									
Course Objective									
	s (COs): After co	mpletion of this cours	e, the studer	ıts shall	be abl	e to:			
1.									
2.									
3. 4.									
5.									
Unit – 1	Introduction								
D d	1.:	osynthesis - C3 &	C41	.4	1. :		1	4:	D:
		on potential of bion							
characteristics of		n potential of old	nass. Class	mineano	11 01	Ololli	.55. 1	1135100	chemicai
Unit – 2	Riomass Conver	rsion Techniques							
Omt – 2	Diomass Conver	sion rechniques							
		emical, chemical and							
		gas production mecha							
		maintenance of bioga							
		rmotive power general rocess description, dis-		cohol p	roduct	ion fro	om bic	mass.	Types of
Unit – 3	Biofuel Convers	•	illation etc.						
					~				
		ydrolysis and hydroge							
	of biodiesel engi	el – the mechanism of ne utilization etc.	transesterm	ication,	ruei ci	iaracte	TISUCS	O1 D10	uiesei,
Unit – 4	or blodieser eligi	ne amization etc.							_

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Thermochemical	conversion	of biomass-con	nbustion in	excess	oxygen,	combustion	in oxygen	deficient
atmosphereprod	luctsfuel	characteristics.	Pyrolysis,	Carbon	ization,	Charcoal	production	biomass
gasification-differ	rent types' p	ower generation	from gasific	cation -	cost ben	efic analysis	of power g	eneration
by gasification.								

Unit – 5

Waste land utilization through energy plantation- basis of selecting the plants for energy plantation, biomass based power generation.

Text Books

- 1. Maheswari R. C., (1997); Bio Energy for Rural Energisation, Concepts Publication
- 2. Khandelwal KC, Mahdi SS, (1986); Biogas Technology A Practical Handbook, Tat Mcgraw Hill
- 3. Sorensen Bent, Renewable Energy, (2nd Ed 2000), Academic press, New York
- 4. Johansson Thomas B, (1993): Renewable Energy: Sources for fuels and electricity Earthscan Publishers, London

Reference Books:

Course Code

1. Rosillo-Calle Frank, Francisco Rosillo, 2007; The Biomass Assessment Handbook: Bioenergy for a Sustainable Environment Published by Earthscan

Course

Contact Hours

Credi

2. Rai G.D, (2007); Non-conventional energy sources by, Khanna Publishers.,

Course Title

3. Mittal K. M, (1996); Biogas systems: Principles and applications, New Age International

Course coue		Course Time		Course		-	min	11001			Crour
				Туре							t
EEN073300	EHVA	ACANDDCTRANSMIS Theory L 3 T 0 P SION									
Pre-requisite	:K1	nowledgeof powersyste	mstruc	tureandanalysi	smetho	ds.	•				
Course Assessm	sessment Methods: 40 marks internal examination & 60 marks									rks e	external
			exar	mination							
Syllabus Version	1:	1	•								
	ason and about the	history of EHV AC & EHV AC & DC tra									
		After completion of this	course	, the students s	shall be	e able	to:				
		spects of EHV ACand D	Ctrans	mission lines.							
	-	parameters of EHV line.									
	-	nciplesandmodellingofE									
		lverse effects of system					tigatio	on.			
Unit – 1	of HVDC	linesandunderstandthe v	arious	systemelement	sinvolv	red.					
OIIIt – I											
		OCtransmission. Genera									
TransmissionTe	chnologyE	Bundled conductors,Max	well's	Coefficients, I	Inducta	ncear	idcapa	citan	ce ma	atrices	S.
Unit – 2											

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Surface Voltage gradient on bundledconductors, Mangold's formula, Gradient factors. Corona Effects:
PowerLoss,BI.Groundlevelelectrostaticfieldof EHV Lines
Unit – 3
IntroductiontoHVDCtransmission:ComparisonwithEHVACpowertransmission,HVDCsystemconfigurationandc
omponents.PrinciplesofAC/DCconversion:Converterconnections,Waveforms,
RelevantEquations.
Unit – 4
Harmonics and Filters: Waveforms of a-c bus currents in Star/Star, Star/delta&12-
phaseconvertersandtheirFourier-seriesrepresentations,Non-
characteristicharmonics,HarmfulEffectsofHarmonics,DCsideharmonics,Filtersanddetuning,Cost
considerationsoffilters.
Unit – 5
HVDC system control : FrequencyControl of A.C. system, Stabilisation&dampingof
A.C.networks.HVDCsystemselements:Convertertransformers,D.C.smoothing reactors,Earthelectrodes
&earth return.
Text Books
Text Books
1. R.D.Begamudre, Extra High Voltage ACT ransmission Engineering, Wiley Eastern Ltd., 1986.
2. S.Rao,EHV ACandHVDCTransmissionEngineering&Practice,KhannaPublishers,Delhi,1990.
Reference Books:
1. HVDCPowerTransmission SystemsbyK. Padiyar, WileyEasternLtd.
2. EHV ACandHVDCTransmissionEngineeringandPracticesbyS.S. Rao,KhannaPublications.

EEN073280	Material	Theomy	+	_	,				
	Science for Energy Applications	Theory	L	0	3				
Pre-requisite	:NILL			•					•
Course Assessment	Methods:	40 marks internal exan	nination &	60 mai	rks exte	ernal e	examin	ation	
Syllabus Version :	1								
Course Objectives : Course Outcomes (1.		npletion of this course,	the studer	nts shall	be abl	e to:			
2. 3.									
4. 5.									
Unit – 1 In	itroduction								

09

Structure and properties of ceramics.

crystalline materials. Miller indices, Lattice structure, Braggs Law and determination of lattice structure of materials, Anisotropic elasticity, Elastic behavior of composites, Structure and properties of polymers.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit - 2**Solid State Physics**

Band theory of Solids: Periodic well potentials, Block Functions, Kronig-penny model, Energy bands in metals, insulators, and semiconductors, the concept of a "hole" Intrinsic and extrinsic semiconductors. Defects: Point defects, Line defects and dislocations, Diffusion: Steady and non-steady state diffusion, Factors that influence diffusion, Phase Equilibrium and Phase Diagrams, Phase Transformation.

Electrical properties of Materials

Conductivity, Electron Mobility, Electrical Resistivity of Metals & Alloys, Semiconductors, Hall Effect, Carrier concentration, Dielectric Properties, Capacitance, Types of polarizations, Ferro electricity, Piezoelectricity, Thermal properties: Heat capacity, Thermal expansion, Thermal conductivity. Magnetic properties: Diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, and ferromagnetism. Influence of temperature on magnetic behavior, domains and hysteresis. Superconductivity.

Unit - 4**Optical properties of materials**

Interaction of solids with radiation, Atomic and electronic interaction, Optical properties of Metals and nonmetals: reflection, absorption, refraction and transmission. Applications of Optical Phenomena: Luminescence, Photoconductivity, Color, Laser, Optical Fibers in communications.

Unit – 5 Composites, Corrosion and Degradation of Materials, Characterization of Materials and Economic, Environmental and Social Issues of Material Usage

Particle reinforced composites. Fiber reinforced composites. Structural composites, Corrosion of metals, Corrosion of ceramics, Degradation of polymers. Introduction to spectrophotometry and its application in material science. Crystallography, X-Ray Diffraction Methods, Fluorescence spectroscopy, Raman spectrograph and its application. Electron Diffraction- diffraction pattern in specific modes, advanced microscopic techniques for material characterization - SEM, TEM, STM AFM. Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design

Text Books

- L. H. Van Vlack, Elements of Materials Science and Engineering, Addison-Wesley, New York, 1989.
- W. D. Callister, Jr., Materials Science and Engineering: An Introduction, John Wiley, New York,
- K. M. Ralls, T. H. Courtney, and J. Wulff, Introduction to Materials Science and Engineering, Wiley, New York, 1976.
- V. Raghavan, Material Science and Engg. A first course, Prentice Hall of India, 1988

Reference Books:

- 1. Z. D. Jastrzebski, the Nature and Properties of Engineering Materials, John Wiley, New York, 1987.
- 2. Ben G. Streetman, Solid State electronic devices, Prentice-Hall of India Pvt. Ltd., New Delhi, 1995.

Course Code	Course Title	Course Type	Contact Hours								
EEN073260	PROJECT	Theory	L	2	T	1	P	0	3		
	MANAGMENT										
Pre-requisite	:NILL										
Course Assessme	nt Methods:	40 marks internal exam	ination &	60 mai	rks exte	ernal	examin	ation			
Syllabus Version	: 1										
Course Objective	s:										
Course Outcomes	s (COs): After com	pletion of this course,	the studen	ts shall	be abl	e to:					

1.

3.

2.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

5.
Unit – 1
Functions of Project Management, Project Life Cycle, the Project Environment, Project Selection, Project Proposal, Project Scope, Work Breakdown Structure.
Unit – 2
Network Scheduling, Critical Path Method, Program Evaluation & Review Technique, Planning and Scheduling of Activity Networks, Assumptions in PERT Modelling, Time-cost Trade-offs, Linear Programming and Network Flow Formulations, PERT/COST Accounting.
Unit – 3
Scheduling Software, Precedence Diagrams, Decision CPM, Generalized Activity Networks, GERT.
Unit – 4
Estimation of Project Costs, Earned Value Analysis, Monitoring Project Progress, Project Appraisal and Selection, Recent Trends in Project Management.
Unit – 5
Concept, need, its existence in India and abroad, traits of an entrepreneur, development of entrepreneurial talents, motivation, achievement, risk taking, goal setting, creativity, obligation, pitfalls and steps for successful entrepreneurship. Entrepreneurship development through promotional organization, concept and growth of such organizations especially with respect to state. Procedure for starting small scale industry, incentives for their promotions.
Text Books
 Systems analysis techniques for water resources planning and management. Mohammad Karamouz. Water resources engineering Fourth Edition, McGraw-Hill International Editions
Reference Books:
1. Industrial Engineering and Management, O.P.Khanna, DHAN publishers

Course Code	Course Title	Course Type		Credit						
EEN083080	Basics of Fuel Cell and Hydrogen Energy	Theory	L	3	T	0	Р	0	3	
Pre-requisite	:NILL									
Course Assessmen	nt Methods:	ethods: 40 marks internal examination & 60 marks external examination								
Syllabus Version:	1									

Course Objectives:

The course will enable the students to

- 1. understand importance of clean fuel and hydrogen
- 2. understand the basics of electrochemical conversion
- 3. understand similarities and differences between batteries and fuel cell
- 4. understand the basic design and working of fuel cell
- 5. know the characteristics parameters of fuel cell and components
- 6. understand the different types/designs and working of fuel cells
- 7. learn about the hydrogen energy generation, storage, conversion and transportation

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. correlate clean fuel and hydrogen,
- 2. explain basics of the electrochemical conversion process vis-à-vis batteries and fuel cell,
- 3. explain the basic design and working of fuel cell,
- 4. explain the different component and characterization technique,
- 5. offer fuel cell design options for different and niche applications and fuel options,
- 6. suggest methods for hydrogen production based on different raw materials,
- 7. explain methods for hydrogen energy storage and transportation,

Unit – 1 Clean fuel and hydrogen:

Clean fuel; Hydrogen as clean fuel; Carbon mitigation potential; Hydrogen Economy

Unit – 2 **Basics of electrochemical conversion:**

Difference and similarities between batteries and fuel cell; combustion versus electrochemical conversion of hydrogen

Unit – 3 **Basic design and working of fuel Cell:**

Fuel cell definition, fuel cell history, Types and components of Fuel Cells, principle of working, Fuel cell thermodynamics - second law analysis of fuel cells, efficiency of fuel cells, fuel cell electrochemistry - Nernst equation, Electrochemical kinetics, Butler-Volmer equation.

Unit – 4 Fuel Cell components and Characterization:

Cell components, stack components, system components; Fuel Cell Characterization: In-situ and Ex-situ; System and components' characterization

Unit – 5 **Different Designs/types of fuel Cells:**

Overview of intermediate/high temperature fuel cells - Solid oxide fuel cells (SOFC), Molten carbonate fuel cells (MCFC), Phosphoric acid fuel cells (PAFC) Polymer Electrolyte fuel cells ,Heat and mass transfer in polymer electrolyte fuel cells, water management in PEFCs, Current issues in PEFCs, Direct methanol fuel cells (DMFC) - Electrochemical kinetics methanol oxidation, Current issues in MFCs, Fuel crossover in DMFCs, Water management in DMFCs, high methanol concentration operation, limiting current density

Unit – 6 **Hydrogen Generation:**

Hydrogen: Its merit as a fuel, Applications. Hydrogen production methods: Production of hydrogen from fossil fuels, electrolysis, thermal decomposition, photochemical and photo-catalytic methods.

Unit – 7 **Hydrogen Storage and transportation:**

Hydrogen storage methods: Metal hydrides, metallic alloy hydrides, carbon nanotubes, sea as source of deuterium

Unit – 8 **Hydrogen Energy Conversion:**

Direct conversion of hydrogen, in-situ and ex-situ conversion using hydrocarbon fuel; Combustion for thermal applications

Text Books

- 1. J Larminie and A Dicks, Fuel Cell Systems Explained, 2nd Edition, Wiley, 2003
- 2. Xianguo Li, Principles of Fuel Cells, Taylor and Francis, 2005
- 3. S Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer

Reference Books:

- 1. O'Hayre, SW Cha, W Colella and FB Prinz, Fuel Cell Fundamentals, Wiley, 2005
- 2. A Faghri and Y Zhang, Transport Phenomena in Multiphase Systems, Elsevier 2006

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Code		Course Title		Course Type		С	ontact	Hou	rs		Credit
EEN013100		POWERSYSTEML AB	Laboratory L 0 T 0							2	1
Pre-requisite	:K	nowledgeof the subject	Pow	versystemanalysis.		I					.1
Course Assessm	ent Met	hods :	40	marks internal	exar	ninati	on &	t 60) ma	rks	external
			exa	amination							
Syllabus Version	1:	1									
Course Objectiv											
Tohavepractical vices.	exposure	eforfaultanalysisinpowe	rsyst	tem,loadflowanalys	sisand	powe	rsyste	mpro	tection	nde	
	es (COs)	: After completion of th	is co	ourse, the students	shall t	e able	e to:				
		onofdifferentpowersyste						aults.			
List of experime	ents										
1. Determ	ination	of ABCD parameter of	scal	e down model of a	620 1	MVA,	275 k	V, 4	00 km	trans	mission
		network analyzer.									
		haracteristics of an over									
		ling of multi area AGC	syste	em in Simulink env	ironm	ent.					
		ysis using ETAP.		1 DOLD							
		ising DC Network analy									
		r based static VAR com									
		of earth resistivity and eadesign using ETAP.	arın 1	resistance using me	egger.						
Text Books	ilu illat (design using ETAT.									
Text Books											
D.C. D.1											
Reference Book	s:										

Course Code		Course Title		Course Type		Credit						
EEN013120	AdvanceProgrammingLab			Laboratory	L 0 T			0	P	2	1	
Pre-requisite : None									1			
Course Assessment Methods:				marks internal	l exam	ninatio	on &	c 60) ma	ırks	external	
Syllabus Version	n :	1										
Course Objectiv	es:											
To develop the	To develop the programming skills											
	Course Outcomes (COs): After completion of this course, the students shall be able to: The students will be able to write programs for any optimization algorithm.											

List of experiments

- 1. Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using Bracketing method.
- Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using exhaustive method. Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using region elimination

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 4. Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using Fibonacci Search method
- 5. Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using Newton-Raphson method.
- 6. Write a program in matlab to minimize the function $f(x_1, x_2) = (x_1^2 + x_2 11)^2 + (x_1 + x_2^2 7)^2$ Using Hook Jeevs Pattern search method.
- 7. Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using Secant method.
- 8. Write a program in matlab to minimize the function $f(x) = x^2 + \frac{54}{x}$ Using Bounding Phase method.

$\frac{1}{x}$
method.
Text Books
Reference Books:

SEMESTER VII

Course Code	Course Title			Course	Contact Hours						Credit
				Туре							
EEN014010	SV	WITCHGEARANDPROTECTIO N		Theory	L	3	Т	0	P	0	3
Pre-requisite		:Knowledgeof powersystem.									
Course Assessment Methods:				narks internation	al exa	amin	ation	& 6	0 m	arks	external
			Схап	illiation							
Syllabus Version	:	1									

Course Objectives:

The course aims at various switchgear and protective system practices adopted in themodern day power system. content includes various practices adopted protection, types characteristic and selection of suitable surgediverters and formulating aappropriate insulation coordinates and the surgediverters are surgediverters and the surgediverters are surgediverters and the surgediverters and the surgediverters are surgediverters are surgediverters and the surgediverters are surgediverters and the surgediverters are surgediverters and the surgediverters are surgediverters are surgediverters and the surgediverters are s tion scheme for the given power system. The course also includes various neutral grounding schemesadopted in the power systems. The student is also exposed to various circuit interrupting devices includingswitchesused, theircharacteristic, relativemerits, ratings and selection. The course also includes relay protection system used, types students of relays including solid state devices. The also study variousprotectiveschemesforprotectionofalternators motors, transmissionlines, transformer etc.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Analyzeoperationandperformanceofrelayforpowersystemprotection
- 2. Designprotectionsystemfordifferentcomponentsofpower system
- 3. Designandanalyzedifferentovervoltageprotectionsysteminpowersystem.
- 4. Analyzedifferenttypesoffuseandgroundingtechniquesinpowersystem
- 5. Analyzedifferenttypesofcircuit breaker

Unit – 1	Operationandperformanceofrelay
----------	--------------------------------

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Functionsofprotectiverelaying, Fundamental characteristics of relays, and Standard definition of relay terminologies, Relay classifications, operating principles of single and double actuating quantity type electromechanical relays. Directional relay, reverse power relay.

electromechanicalrelays.Directionalrelay,reversepowerrelay.	
Unit – 2 Relayfor different components of power system	
DifferentialprotectionschemesforBus bars, Transformer and Alternator. And transformers. Buchholtz relay Transformerprotection. Alternator protection: Negative phase sequencerelay, Lossoffield protect Reverse power protection Line protection: Various types of Distance relays, performance of distance relays. Induction Motor Protection: Abnormal operating conditions, Contactors circuit breakers formotors. Solid state relays: Phase and amplitude comparators, Duality between phase amplitude comparators, general equation for comparators. Computer aided relaying: Introduction to microcomputes and relays, Digital Protection general functional diagram microcomputer based relays. Advantages over conventional relaying techniques.	ion, and and uter
Unit – 3 OverVoltageProtection	
TypesofSystemTransients:Surgephenomena,typeandmagnitudeofswitchingandlightningover voltages. Methods of over voltage protection - rodgap,valve,ZnOtypeconstruction,workingmeritsandapplications,voltageandcurrentratings,Protectionoftransmissionlinesagainstovevoltages	
Unit – 4 FuseandGroundingTechniques	
Fusesandswitches:Re-wirablefuses,HRCfeatures,construction,fuseelements,phenomena of cut off, selection fuses,comparison of fuses and circuit breakers.Neutralgrounding capacitorcoupling,disadvantagesofungroundedsystems,effectively grounded, resistive and reactivegrounding. Unit – 5 CircuitBreaker	ıg-
Circuit breakers- principle of workin arcphenomenon,methodsofarcextinction,recoveryandrestrikingvoltage.Circuit breaker ratings- breaking capacity, warious times associated with circuit breakers, Oil circuit backers and air circuit breakers-construction, principle of working, merits and application SF6 circuit breaker, principle construction of different, working, merits and application of SF6 breakers. Vacuum circuit breaker, are extincting invacuum, working, construction and application of vacuum circuit breakers.	ng uit le,
Text Books	
 S.S.Rao -SwitchgearandProtection-KhannaPublishers,N.Delhi,1990. I.J. Nagrathand D. P.Kothari_PowerSystemEngineering,TMH,1994 Chakraborti,Soni Gupta—ATextbookonPower SystemEngineering—Dhanpat Rai &Co. Mason - The Art and Science of Protective relaying — Wiley Eastern publications,N.Delhi,1992. Badriram and DVishwakarma - Power System Protection and Switchgear - TMH,1995 	
Reference Books:	
 Warrington A.R. and Van C-Protective Relays-Their Theory and Practice Vol. I&II-Chappman and Hall, London, 1969. Ravindranath B. and Chander. M - Power System Protection and Switchgear - Wiley Eastern, 1994. 	
3. Y.G.Paithankar–Fundamentals ofPowerSystemProtection–PHI	

Course	Course Title	Course Contact Hours				Credi			
Code		Туре							t
EEN0140	ADVANCEPOWERCONV	Theory	L	3	T	0	P	0	3
30	ERTERS								
Pre-requisit	Pre-requisite :Understandingofbasicelectricalandelectronicdevicessuchasdiodes,transistors,MOSFETs tor,IGBT,inductors,capacitors,resistorsetc.Knowledgeof power electronics							s,thyris	

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Assessment Methods: 40 marks internal examination & 60 marks external examination	n
Syllabus Version: 1	
Course Objectives: 1. Tointroducevariouspowerconversionprocessesortechniques. 2. To provide an understanding of various power converters and power semiconductor devices, theircontrol,protection aspectsand application. 3. Toexpose studentstovarious topologies ofthepowerconverters.	
Course Outcomes (COs): After completion of this course, the students shall be able to:	
 Identifyandchoosetheappropriatesemiconductorswitchforagivenpowerconverter application. Designandanalysisofnon-isolatedDC-DCconverterin continuousanddiscontinuousconductionmonds. Designandanalysis ofisolated DC-DCconverter. Designandanalysisofresonantconvertersandanalysisofpulsewidthmodulation(PWM)technique. Designandanalysisofmultilevelinvertersanduniversalpowersupplies(UPS). 	ode.
Unit - Advanced solid-state devices	
MOSFETs,IGBT,SiCandGaNbaseddevices. etc,theirpowermodules, intelligentpowermodules,therm protection, gating circuits, digital signal processors used in theircontrol.	naldesign,
Unit – Non-isolated DC-DC converter 2	
Generalizedcomparison between switched modeandlinearDCregulator;Ope steadystateperformanceofBuck,Boost, Buck-BoostandCukConvertersinco conductionmode,discontinuous-modeand boundary between continuous and discontinuous mode of ope	ntinuous-
Unit – 3 IsolatedDC- DC converter	
transition, limitationofthepush-pullcircuit;Half-bridge andFullbridgeDC-DCconverters-their transitions.	Switching switching
Unit – 4 Resonant converters and PWM	
Introductionandclassification;zerocurrentswitch(ZCS);zerovoltageswitch(ZVS);ZCS-clampedvoltageconverters(ZCS-CV).PWMconverter—Singlepulsemodulation,multiplepulsemodulation,sinusoidalpulsewidthmodulation.	
Unit – 5 CompensatorDesign	
Advantages, configurations: Diode clamped,flying capacitor and cascade levelinverters,applications.RedundantandNon-Redundant UPS.	multi-
Text Books	
1. Mohan, Undeland, Robbins_Power Electronics: Converters, Application and Design, John Wiley &sons, 1989	
2. A.I.pressman-Switchingmodepowersupplydesign-MGH,1992	
Reference Books:	
1. M.H.Rashid-PowerElectronics,PHI,2004	

Co	urse	Course Title	Course Type	Contact Hours	Credit
Co	ode				

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

EEN07415	MOD	ERNPOWERCON	VERTER	Theory	L	3	T	0	P	0	3
0		S									
Pre-requisite	:			1	'						,
	or,	nderstandingofbasic ,IGBT,inductors,cap	acitors,resi	istorsetc.Knowl	edgeof p	owere	electro	nics.			
Course Asses		Methods:	40 n	narks internal ex	kaminati	ion & 6	60 mai	rks ex	ternal	exam	ination
Syllabus Vers		1									
Course Object											
		variouspowerconve	rsionproce	ssesortechnique	S.						
2. Topr		din aa faani aaan aasa			om du oto	منتمامين	. a a +1 a a		+u-a1	ataa	
tion	aspects	dingofvariouspowe andapplication.		-						otec	
	_	identstovariousDC-		_	_	_		onver	ters.		
		ariousmodulationted									
		COs): After complete									
		nalysisofnon-isolate nodewithidealandno			nuousan	ddisco	ntınuo	ous			
		nalysisofisolatedDC									
	_	nalysisofisofatedDC nalysisofresonantco		itei.							
		nalysisofresonantco		danalysisofnuls	ewidthm	odulat	tion(P	WM)	techni	aue	
		inepulsewidthmodu									eliminat
		dhysteresismodulat									
Unit – No	n- isola	nted DC-DC conver	rter								
	ompari	sonbetweenswitched	d modeand	llinearDCregula	tor:Ope	rationa	and sto	eadvs	tate n	erforn	nance of
		Boost and Cuk Conv		incontinuous							
modeandbou	ndarybe	etweencontinuousan	ıd								n;Output
		tion;Effectofparasiti	ic elements	S							
Unit -2 Is	olated	DC-DC converter									
		ndits topologies; Fo		erters-Switching	gtransiti	on; Pu	sh-pul	l con	verter	Switch	ing
	nitation	ofthepush-pullcircu	it.								
Unit – 3	Resona	int converters									
		sification;Loadreson		seriesandparalle					contin		and
		ofoperation; Hybrid			ters; zei	ro curr	ent sv	vitch	(ZCS)); zero	voltage
		clamped voltagecon	verters(ZC	CS-CV).							
Unit – 4	DC-A	.C converters									
		current source inv		e-phaseandthree	-phaseb	ridgein	verter	s;squ	are w	ave o ₁	peration,
	_	ation techniques	Tailis.								
_		steresis)Modulation harmonics in the ou					_		ation;l	inearn	nodulati
Text Books											
1. Moh	an, Uno	deland, Robbins_Po	wer Electro	onics: Converte	rs, Appli	ication	and D	Design	n, Johr	1	
		s, 1989			. 11			٥			
2. A.I.p	ressma	n-Switchingmodepo	owersupply	design-MGH,1	992						
Reference Bo	oks:										

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

3. M.H.Rashid-PowerElectronics,PHI,2004

	Co	urse Title	Course Type	Contact Hours						Credi
EEN074170		ACTRANSMISSION SYSTEM	Theory	L	3	T	0	P	0	3
Pre-requisite	:Electi	ricalpowerTransmissic	on,PowerElectronics,Tra	ansfor	mer	s,AC	pow	er.		
Course Assessm	nent Methods:	40 marks internal e	xamination & 60 marks	exter	nal	exan	nina	tion		
Syllabus Version	n:	1								
2. Toacqu 3. Tounde Course Outcome 1. Conduct inves 2. Understand th 3. Understand th 4. Understandthe	lethestudentsaciretheknowledgestandVarious les (COs): Afterstigations on Tre basics and me basics and mebasicsofshuntarACTSdevices	geonFlexibleACtransm FACTSDevices, their of completion of this co- ansmission line with a odelling of shunt conn- odelling of series con- andseries connected FA	nected FACTS devices	ortanc is. be abl on	e to	node	ernpe			em.
ReactivePower(Compensation	A 1 ' OT T	1 1 A C1' D ' D		`	\sim				
ensation by a Se line,Comparisor	eries Capacitor	Connected at the Midp	atedACline,PassiveRea oint of the ompensationbySTATCC				nsuı	mptio	on,Co	omp
ensation by a Seline,Comparison Unit – 2 Static Var CompofSVC,Configur SVC.StaticSync STATCOM,anal pulseconverters	pensator: AnalyrationofSVC,SchronousCompolysisof6-pulseV	Connected at the Midp candShuntCapacitor,Consists VCController,Modelliensator(STATCOM):P	oint of the ompensationbySTATCO	OMano f nalysi	dSS!	SC.	nsui	nptio	on,Co	omp
ensation by a Seline, Comparison Unit – 2 Static Var CompofSVC, Configur SVC. Static Sync STATCOM, analpulse converters Unit – 3 Thyristor and G TCSC, Analysis Control of TCSC	pensator: AnalyrationofSVC,SchronousCompolysisof6-pulseV,multilevel,voltarofTCSC,ModellingofT	connected at the MidplandShuntCapacitor,Constant ShuntCapacitor,Constant ShuntCapacitor,Constant ShuntCapacitor,Modelliensator(STATCOM):P/SCusingswitchingfunageconverters,harmon	ngofSVC,Applicationo rincipleofSTATCOM, a	oMano f nalysi inVS	s of	sc.	, Op	erati	onof	
ensation by a Seline, Comparison Unit – 2 Static Var Compos VC, Configuration SVC, Static Synce STATCOM, analyulse converters. Unit – 3 Thyristor and GTCSC, Analysis Control of TCSC ensator: Operation Unit – 4 Unified Power Fl	pensator: AnalyrationofSVC,SchronousCompolysisof6-pulseV,multilevel,volterofTCSC,ModellingofTonofSSSCand toowControllerationofCompolysisofOpinofSSSCand toowControllerations	connected at the Midple and Shunt Capacitor, Constant Shunt Capacitor, Constant Shunt Capacitor, Constant Shunt Capacitor, Modelli ensator (STATCOM): Parageconverters, harmon Series Capacitor: Basic CSC for stability, GTO checontrol of powerflow and other Multi-Converter and other Multi-Converter capacitors.	ngofSVC,ApplicationorincipleofSTATCOM, action,multi-ictransferandresonance	of finalysic in VS	s of C apac C, cc	eitor	, Op	erati	onof	

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 1. UnderstandingFACTS:ConceptsanfTechnologyofFlexibleACTransmissionSystems, NarainG.Hingorani,Laszlo Gyugyi.
- 2. PowerElectroniccontrolinElectricalSystems: EAcha, V.G. Agelidis, O. Anaya-Lara, T.J. EMiller

Reference Books:

3. FACTScontrollersinPowerTransmissionandDistribution, K.R. Padiyar, NewAgePublication.

Course Code	Course Title	Course Type Contact Hours							Credit
EEN074190	Energy & Environment	Theory	L	3	T	0	P	0	3
Pre-requisite	:NILL								
Course Assessmen	nt Methods:	40 marks internal exam	ination &	60 mar	ks exte	ernal e	examin	ation	
Syllabus Version	: 1								

Course Objectives :

The objective of this course is to acquaint the students with some basic knowledge of environmental issues in energy related projects. The students can solve the various engineering problems applying ecosystem during the generation of energy. They can also use relevant air, water, soil, thermal and noise pollution control method to solve domestic and industrial problems.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Understand the ecosystem and terminology to solve various engineering problems applying ecosystem knowledge during the production of energy.
- 2. Understand the suitable air, water, noise pollution control measures and appropriate acts used to control the pollution.
- 3. Understand the environmental issues during the efficient process of energy harvesting.
- 4. Understand about the Sustainability, Solid Waste Management and guidelines for Environmental Impact Assessment of energy projects..

Unit – 1 **Energy and Environment**

Environmental effects of energy extraction, conversion and use; Sources of pollution; primary and secondary pollutants; Consequence of pollution growth; Air, water, soil, thermal, noise pollution- cause and effect; Causes of global, regional and local climate change; Pollution control methods; Environmental laws on pollution control. GHGs emission and energy activities; Dealing with Climate change on sequences: Emission targets; Measures to reduce GHGs; Climate Change Act.

Unit – 2 **Energy and Climate Change**

Green House Gas Emissions, Depletion of Ozone layer, Global Warming, Climate Change in India, Impact of Climate Change on Glaciers, Rivers and Water Resources, Clean Energy Technologies, Energy economy, Role of Renewable Energy; Risk and opportunities;

Unit – 3 Impact of Energy on Environment

Overview of global environmental problems, Environmental degradation due to Energy production and use, Pollution due to thermal power stations, Environmental aspects of Wind Energy Farms, Environmental aspects of Nuclear power generation, Nuclear waste disposal, Impact of Hydro power generation on Ecology and Environment, Guidelines for Environmental impact assessment (EIA) of Energy Projects

Unit – 4 Sustainability

Global warming; Green House Gas emissions, impacts, mitigation; Sustainability; Future Energy Systems; United Nations Framework Convention on Climate Change (UNFCC); Sustainable development; Kyoto Protocol; Conference of Parties (COP); Clean Development Mechanism (CDM); Prototype Carbon Fund

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

(PCF). **Carbon Trade**: Carbon Market; Commerce of Carbon Market, Environmental Transformation Fund; Technology, Perspective: Strategies for technology innovation and transformation. Indian National Action Plan on Climate Change (NAPCC), Jawaharlal Nehru National Solar Mission (JNNSM).

Text Books

- 1. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.
- 2. R. Wilson and W. J. Jones, Energy, Ecology and the Environment, Academic Press Inc, 1974.
- 3. D.W. Davis, Energy: Its Physical Impact on the Environment, John Wiley and Sons, 1982.

Reference Books:

- 1. J.M. Fowler, Energy and the Environment, 2nd Ed, McGraw Hill, New York, 1984.
- A.K.N. Reddy, RH Williams, TB Johansson, Energy after Rio, Prospects and challenges, UNDP, United Nations Publications, New York, 1997.

Course Code	Course Title	Course Type	Contact Hours					Cred	
									it
EEN074210	FOUNDATIONSOFOPTIM ATION	IIZ Theory	L 3 T 0 P 0					3	
Pre-requisite	: KnowledgeofMATLAF	3,numericalanalysistec	hniques.						
Course Assessi	Assessment Methods: 40 marks internal examination & 60 marks external examina				nation				
Syllabus Version	ersion: 1								
Course Outcon 1. Know 2. Abilit 3. Abilit 4. Abilit 5. Capab	ceus of the course is on convex xfunction optimization too. Inadequateintroductiontolinears maxima problemsintheframewones (COs): After completion of ledgeofbasicoptimizationprobleytoformulatedecisionproblems ytosolvesimplesingleandmultivytoapplynontraditionaloptimizationedietousedifferenttoolstosolveop	algebraandprobabilityt orkofoptimizationprob this course, the studen em. asoptimizationproblem variableoptimizationpro ationalgorithmstosolve timizationproblem.	heory,stu lems. Its shall l Is. bblems. problem	be able	e to:	arnto	frame		
	ion,Variablebounds,Engineerin	goptimization problem	ıs, Optin	nizatio	onalgo	rithm	ıs.		
Unit – 2	SingleVariableOptimization								
halving method;Succes Raphsonmetho	teria, Bracketingmethods: Extended method, sivequadraticestimationmethod, Bisectionmethod, Secantmethod,	Fibonacci I.Gradient-based od,Computerprograms				ethod	l,Point	ods;Int -estim ds:Nev	ation
Unit – 3	Multivariableoptimizational	lgorithm							
	eria,Unidirectionalsearch,Directionalsearch,Directionalsearch method.Com'smethod.							mplex	search
Unit – 4	Constrained optimization al	gorithm							

Characteristics of a constrained problem. Direct methods: The complex method, Cutting planemethod, Indirect method: Transformation Technique, Basic approach in the penalty function method, Interior

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

penaltyfunction	nmethod,Convexmethod.
Unit – 5	Nontraditional optimization algorithm
GeneticAlgorit	hm, Working principles, GAs for constrained optimization, Other GA operators, Advanced GAs,
Differencesbet	weenGAsandtraditional methods, Computerprograms. Simulated annealing method,
workingprincip	oles,Computerprograms.
Text Books	
1. Kalyanmo	y Deb, Optimization for Engineering Design-Algorithms and Examples, 2nd Edition.
Reference Boo	ks:

Course Code	Course Title	Course Type		Co	ntact F	Iours			Credit
EEN074250	POWER	Theory	L	3	T	0	P	0	3
	GENERATION								
	ECONOMICS								
Pre-requisite	: None.								
Course Assessment Methods:		40 marks internal examination & 60 marks external examination							
Syllabus Version	: 1								
01: 4:									

Course Objectives:

- 1. The primary objective of this course is to analyze efficient and optimum operation of electric power generation systems and to provide an overview about the control techniques adopted to ensure the economic operation of a power system.
- 2. This course also introduces optimization methods and their application in practical power system operation problems.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Apply knowledge of India's power scenario, power system structure and related agencies.
- 2. Explain about various types of power plants i.e., hydro, thermal, gas and nuclear.
- 3. Harness power from conventional and renewable sources.
- 4. Select the methods and size of plant generating power for overall economy.
- 5. Decide the tariff structure for different type of users.

Unit – 1	Introduction:

Energy sources and their availability, Principle types of power plants, their special features and applications, Present status and future trends. Hydro Electric Power Plants: Essentials, Classifications, Hydroelectric survey, Rainfall run-off, Hydrograph, Flow duration curve, Mass curve, Storage capacity, Site selection, Plant layout, various components, Types of turbines, Governor and speed regulation, Pumped storage, Small scale hydro–electric plants (mini and micro). Thermal Power Plant: General developing trends, Essentials, Plant layout, Coal–its storage, Preparation, Handling, Feeding and burning, Cooling towers, Ash handling, Water treatment plant, High pressure boilers and steam turbines, Components of thermal power plant. Gas Turbine Power Plants: Field of use, Components, Plant layout, Comparison with steam power plants, combined steam and gas power plants. Nuclear Power Plant: Nuclear fuels, Nuclear energy, Main components of nuclear power plant, Nuclear reactors types and applications, Radiation shielding, Radioactive and waste disposal safety aspect. Non-Conventional Power Generation: Geothermal power plants, Electricity from biomass, Direct energy conversion systems (Solar and Wind), Thermo-electric conversion system, Fuel cells, Magneto-Hydro dynamic system. Cogeneration: Definition and scope, Cogeneration technologies, Allocation of costs, Sale of electricity and impact on cogeneration. Power Plant Economics: Cost of electrical energy, Selection of

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

type of generation and generation equipment, Performance and operating characteristics of power plants, Economic scheduling principle, Load curves, Effect of load on power plant design, Load forecasting, electric tariffs, Peak load pricing.

Text Books

- 1. Chakrabarti, A., Soni, M.L., Gupta, P.V. and Bhatnagar, U.S., a Text Book on Arora, S.C
- 2. and Domkundawar, S., a course in Power Plant Engineering, DhanpatRai (2002).
- 3. Deshpande, M.V., Power Plant Engineering, Tata McGraw Hill (2004).
- 4. Gupta, B.R., Generation of Electrical Energy, S. Chand (1998).
- 5. Deshpande, M.V., Electrical Power System Design, McGraw Hill (2004).
- 6. Wood, A.J. and Wollenberg, B.F., Power Generation and Control, John Wiley (2004).

Reference Books:

EEN074230 Advanced PV Technology Pre-requisite :NILL Course Assessment Methods: 40 marks internal examination & 60 marks external examination Syllabus Version: 1 Course Objectives: Course Outcomes (COs): After completion of this course, the students shall be able to: 1. 2. 3. 4. 5. Unit – 1 Introduction Cell and Module Concepts: Flat plate and concentrator cells and modules. Multijunction concepts. Overvi of cell types and technology status. Resource limitations to terawatt photovoltaics. Potential Earth-abunda materials for photovoltaics, Approaches to low-cost thin-film photovoltaic cells.	Course Code	Course Title	Course Type		Co	ntact I	Hours			Credit
Course Assessment Methods: 40 marks internal examination & 60 marks external examination Syllabus Version: 1 Course Objectives: Course Outcomes (COs): After completion of this course, the students shall be able to: 1. 2. 3. 4. 5. Unit – 1	EEN074230		Theory	L	3	T	0	P	0	3
Syllabus Version: Course Objectives: Course Outcomes (COs): After completion of this course, the students shall be able to: 1. 2. 3. 4. 5. Unit – 1	Pre-requisite	:NILL		•	•			•		1
Course Objectives: Course Outcomes (COs): After completion of this course, the students shall be able to: 1. 2. 3. 4. 5. Unit – 1 Introduction Cell and Module Concepts: Flat plate and concentrator cells and modules. Multijunction concepts. Overviof cell types and technology status. Resource limitations to terawatt photovoltaics. Potential Earth-abundations.	Course Assessme	ent Methods :	40 marks internal exam	nination &	60 mai	rks exte	ernal	examin	ation	
Course Outcomes (COs): After completion of this course, the students shall be able to: 1. 2. 3. 4. 5. Unit – 1 Introduction Cell and Module Concepts: Flat plate and concentrator cells and modules. Multijunction concepts. Overviof cell types and technology status. Resource limitations to terawatt photovoltaics. Potential Earth-abundations.	Syllabus Version	: 1								
1. 2. 3. 4. 5. Unit – 1 Introduction Cell and Module Concepts: Flat plate and concentrator cells and modules. Multijunction concepts. Overviof cell types and technology status. Resource limitations to terawatt photovoltaics. Potential Earth-abundations.	Course Objective	es:								
Cell and Module Concepts: Flat plate and concentrator cells and modules. Multijunction concepts. Overvior of cell types and technology status. Resource limitations to terawatt photovoltaics. Potential Earth-abundation	1. 2. 3. 4. 5.		pietion of this course,	the studer	nts snam	be abl	e to:			
of cell types and technology status. Resource limitations to terawatt photovoltaics. Potential Earth-abunda	Unit – 1	Introduction								
materials for photo columns, reperouses to to meet and mini photo column const.	of cell types and	technology status.	Resource limitations to	o terawatt	photov	oltaics.				

Unit – 2 **Emerging PV Devices**

High efficiency crystalline silicon designs. Passivation, light trapping and contact structures. Cost reduction strategies. III-V devices, high concentration, quantum wells devices, multijunction structures, Thin film solar cells, structures and fabrication, novel device designs, Organic photovoltaic cells, Dye-sensitized solar cells, thermophotovoltaic devices, Multijunction tandem cells and concentrating systems. Efficiency limits. Approaches to low-cost thin-film and 3-dimensional photovoltaics. Terawatt low-cost wafer silicon photovoltaics, Perovskite solar cell, Quantum dot (QD) solar cells, Multi-junction solar cells.

Unit – 3 Advance Characterization Methods

Material characterization, X-ray diffraction, optical characterization, minority carrier lifetime and diffusion length measurement. Cell measurement, solar simulation, conversion efficiency and spectral response. I-V-T and C-V-f measurements. Measurement and performance standards.

Unit – 4	Basic 8	System	Design
----------	---------	--------	--------

PV arrays, electrical connections and wiring issues BOS components Overview of stand alone and grid

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

connected systems System sizing, stand alone System: Applications, Performance assessment, Standards and regulations. PV system for grid interactive applications: Inverter systems, electrical supply issues Grid connection regulations, Harmonic content, reactive power, wiring issues, PV based hybrid system, Design of large scale systems, Very Large Scale Photovoltaic (VLSPV), PV Instrumentation.

Unit – 5 **Building Integrated Systems**

System design and sizing, Energy in buildings, building components, Installation and operation Concentrator systems: Design of concentrator systems, Operation and maintenance

Unit – 6 **Monitoring & Performance**

Monitoring specifications Yield and performance ratio, MTBF, Operational issues and maintenance, Standards for construction and operation, Regulations governing system design and operation, Health and safety issues

Unit – 7 Space systems

Array configurations, Quality control and assessment, Design of systems

Unit – 8 **Economics, Policy and Environment**

Economic Analysis: Economic theory, Production economics, Subsidies and tariff issues, financing mechanisms. Policy Issues: Market development, Government policies, Climate change issues, Environmental Impact Assessment, Module production, Energy analysis, Life cycle analysis, CO₂ emissions.

Text Books

- 1. Solar Cell Device Physics, by S. J. Fonash (2nd edition, Academic, 2010)
- 2. Basic Research Needs for Solar Energy Utilization (Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005
- 3. Crystalline Silicon Solar Cells, by A. Goetzberger, J. Knobloch, and B. Voss (Wiley, 1998)
- 4. Third Generation Photovoltaics: Advanced Solar Energy Conversion, by M. A. Green (Springer, 2006)
- 5. Solar Electricity, by T. Markvart (2nd edition, Wiley, 2000)
- 6. Alternative Energy Resources: The Quest for Sustainable Energy, by P. Kruger (Wiley, 2006)
- 7. Renewable Energy: Technology, Economics, and Environment, by M. Kaltschmitt, W. Streicher, and A. Wiese (Springer, 2007)

Reference Books:

Course Code	Course Title	Course Type Contact Hours								
EEN084050	Energy Policy and Economics		L	3	T	0	P	0	3	
Pre-requisite	:NILL	VILL								
Course Assessmen	nt Methods:	40 marks internal exam	ination &	60 mar	ks exte	rnal e	xamin	ation		
Syllabus Version :	1									

Course Objectives:

The course will enable the students to

- 1. understand basic concepts need of correlating economics, policy and energy
- 2. understand the basics of engineering economics
- 3. undertake financial evaluation of energy technologies based on renewables

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- 4. understand demand and supply analysis
- 5. understand energy project financing including through CDM
- 6. understand energy policy and regulations
- 7. Learn to undertake simulation studies on energy planning

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Correlate economics, policy, and energy
- 2. Illustrate Basics of engineering economics
- 3. Carry out financial evaluation of energy technologies.
- 4. Suggest ways to handle energy economy interaction and financing.
- 5. Carry out energy demand and supply economics.
- 6. Interpret energy policies and regulations.

Unit – 1 Correlating economics, policy and energy:

Basics of engineering economics, Need of financial evaluation of energy technologies; Relevance of financial and economic feasibility evaluation of energy technologies and systems

Unit – 2 **Basics of engineering economics:**

Rate of interest, financial evaluation parameters: Payback period, NPV, Cost-Benefit analysis, internal rate of return

Unit – 3 Financial evaluation of energy technologies

Solar thermal systems; bioenergy systems; Case studies on techno-economics of energy conservation and renewable energy technologies.

Unit – 4 Energy – economy interaction and financing

Energy investment planning and project formulation. Energy pricing. Policy and planning implications of energy-ecology interaction, Clean development mechanism. Financing of energy systems

Unit – 5 Energy demand and supply economics

Energy demand analysis and forecasting, Energy supply assessment and evaluation, Energy demand – supply balancing, Energy models.

Unit – 6 Energy policy

Energy policy related acts and regulations; Electricity Act 2003; Simulation Software for energy planning(MARKAL, LEAP)

Text Books

- 1. Kandpal T. C. and Garg H. P. (2003): Financial Evaluation of Renewable Energy Technology,
- 2. Macmilan
- 3. Bhattacharyya S. C. (2011): Energy Economics, Springer
- 4. Ferdinand E. B. (2000): Energy Economics: A Modern Introduction, First Edition, Kluwer
- 5. Stoft S. (2000); Power Systems Economics, Willey-Inter Science
- 6. Munasinghe M. and Meier P. (1993): Energy Policy Analysis and Modeling, Cambridge
- 7. University Press
- 8. Samuelson P. A. and William D. N. (1992): Economics, 14th edition, McGraw Hill
- 9. Thuesen G. J. and Fabrycky W. J. (2001): Engineering Economy, Ninth Edition, Prentice Hall

Reference Books:

- 1. Hamies; Energy Auditing and Conservation; Methods, Measurements, Management & Case study, Hemisphere, Washington, 1980.
- Bureau of Energy Efficiency; Study material for Energy Managers and Auditors Examination: Paper I to IV. 2003.

Course Code		Course Title		Course Type	pe Contact Hours C									
EEN014070		DIGITAL SIGNAL PROCESSING LAB		Laboratory	L	0	Т	0	P	2	1			
Pre-requisite	:]	Knowledgeof the sul	bjec	t Digital Signal Pr	ocess.									
Course Assessm	ent Mo	ethods:	40	marks internal ex	aminatio	on & 6	0 mar	ks ex	ternal	exam	ination			
Syllabus Version	1:	1												
Course Objective		reof different types	of e	ionals and sional r	rocessi	na teck	miane	·c						
		s): After completion												
	l learn	different signal pro	cess	ing techniques.										
Unit – 1														
		ls Simulate the follo	win	g signals using Py	thon/ M	ATLA	В.							
a. Unit b. Unit		se signal signal												
c. Unit														
d. Bipo														
e. Trian		signal.												
2. Linear convo		unction for the linea		nyalutian af tura a	******									
		may be kept in diffe				he DS	P hard	lware						
		esult as a file and obs			ided to t	ne Do	1 Hair	ware	•					
3. IFFT with FF														
a. Use t	he FF	T function in the pre	eviou	us experiment to c	ompute	the IF	FT of	the in	put si	gnal.				
	-	Γ on the stored FFT	valu	es from the previo	us expe	riment	s and	obser	ve the	e				
reconst	ruction	1.												
3. Overlap Add l														
		of filter coefficients								_				
		system shown in th												
necessa		e signal values into	DIOC	cks of length N – 2	.000. Ра	a me i	ast bro	JCK W	ıın ze	ros, n				
	-	the overlap add bloo	ck c	onvolution method	1.									
4. Design of FIR														
Text Books														
Reference Books	s:													

Course Code	Course Title	Course Type Contact Hours							Credit
EEN024110	Energy Management	Theory	L	3	T	1	P		4
Pre-requisite	:NILL								

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Assessment Methods: 40 marks internal examination & 60 marks external examination

Syllabus Version:

Course Objectives:

The objective of the Energy Management course is to acquaint the students with the broad concepts of energy management and audit, the student faces during course of their study in the industrial applications. The student with the knowledge of energy management and audit, will understand and explain scientifically the various energy management related issues in the industry or engineering field. The student will also able to understand the basic principles of energy conservation for industry, nation and globe. The introduction of topics related to various industrial applications will make the engineering student upgraded with the new technologies.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To perceive the role of energy mangers in the industries and to investigate the methodology of detailed energy auditing.
- 2. To rationalize the thermal and electrical energy management using latest technologies.
- 3. To list the major energy conservation techniques such as; Co-generation and Waste heat recovery, that are used widely in the industries.
- 4. To enlighten the concept, potential and economics of total energy systems.

Unit – 1 **Introduction**

Energy Scenario - Principles and Imperatives of Energy Conservation. Energy Consumption Pattern, Resource Availability, Role of Energy Managers in Industries. Energy Audit-Purpose, Methodology with respect to process. Industries - Power plants, Boilers etc, Characteristic method Employed in Certain Energy Intensive Industries

Unit – 2 Thermal energy Management

Energy conservation in boilers, steam turbines and industrial heating systems; Application of FBC; Cogeneration and waste heat recovery; Thermal insulation; Heat exchangers and heat pumps; Building Energy Management.

Unit – 3 **Electrical Energy Management**

Potential Areas for Electrical Energy Conservation in Various Industries-Energy Management opportunities in Electrical Heating, Lighting system, Cable selection, Energy Efficient Motors - Factors involved in Determination of Motor Efficiency Adjustable AC Drives, Applications & its use variable speed Drives/Belt Drives Importance of Energy Management, Energy Economics - Discount Rate, Payback Period, Internal Rate of Return, Life Cycle Costing.

Unit – 4 **Co-generation**

Advantages of Cogeneration Technology. Cogeneration Application in various industries like Cement, Sugar Mill, Paper Mill etc. Sizing of waste heat boilers, Performance calculations, Part load characteristics selection of Co-generation Technologies. Financial considerations. Operating and Investments - Costs of Cogeneration.

Unit – 5 Waste heat recovery

Recuperates, Regenerators, economizers, Plate Heat Exchangers, Waste Heat Boilers. Classification, Location, Service Conditions, Design Considerations, Unfired combined Cycle - supplementary fired combined cycle, fired combined cycle applications in Industries. Fluidized bed heat exchangers, heat pipe exchangers, heat pumps, thermic fluid heaters selection of waste heat recovery technologies, financial considerations, operations and investment costs of waste heat recovery.

Unit – 6 **TotalEnergy system**

Concept of Total Energy, Advantages & Limitations, Total Energy system & Application - Various Possible Schemes Employing Steam Turbines Movers Used in Total Energy Systems -Potential & Economics of Total Energy Systems

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Text Books

- 1. C. H.Butler, Cogeneration, McGraw Hill Book Co., 1984.
- 2. J. H. Horlock, Cogeneration Heat and Power, Thermodynamics and Economics, Oxford, 1987.
- 3. S. Sengupta, S.S. EDS, Lee, Waste Heat Utilization and Management, Hemisphere, Washington, 1983.
- 4. C.B. Smith, Energy Management Principles, Pergamon Press, NewYork, 1981
- 5. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management & Case study, Hemisphere, Washington, 1980
- 6. P.R. Trivedi, K. R. Jolka, Energy Management, Commonwealth Publication, NewDelhi, 1997
- 7. L. C Witte, Industrial Energy Management & Utilization, Hemisphere Publishers, Washington, 1988.
- 8. R.M.E. Diamant, Total Energy, Pergamon, Oxford, 1970.

		•				T			1	
v	6 1	to:	re	n	CO	н	· ^	\sim	ks	۰
ı 🔪	-			ш	-	- 1.3	,,,,	•	N.O.	

SEMESTER VIII

Course Code	Course Title		Course		Co	ntact	Hou	rs		Cred
		Туре								it
EEN074080	FUZZYLOGICANDEVOLUTIO	NARY	Theory	L	3	T	0	P	0	3
	ALGORITHM									
Pre-requisite	:Knowledgeof MATLAB.									
Course Assessment	Methods:	40 n	narks interna	l exar	ninat	ion &	& 60	maı	ks e	xternal
		exan	nination							
Syllabus Version:	1									

Course Objectives:

- 1. The course addresses about Fuzzy logic concepts. Algebraic and logic operations on fuzzy sets. Semiconductordevices.
- 2. Design of fuzzy membership functions and rule-based system. Defuzzification techniques. Comparisonand evaluation of defuzzification methods. It is of interest to understand how the fuzzy sets could be used for various applications.
- 3. Understandingoftheneedforstabilityanalysisoffuzzybasedcontrol system.
- 4. An understanding of Genetic algorithms its working principle and application. Difference and similarities between GA and other traditional methods.
- 5. Learning various application-based optimization techniques.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Comprehendthefuzzylogiccontrolandadaptivefuzzylogic.
- 2. IdentifyanddescribeFuzzyLogicandArtificialNeuralNetworktechniquesinbuilding intelligentmachines.
- $3.\ Apply Artificial Neural Network \& Fuzzy Logic models to handle uncertainty and solve \ engineering problems.$
- 4. RecognizethefeasibilityofapplyingaNeuro-Fuzzymodelforaparticularproblem
- 5. Integrateneuralnetwork and fuzzy logicto extend the capabilities for efficient and effective problems olving methodologies

Unit – 1	Fuzzysets fuzzyrelatio	n and membership functions	S	
Definitions	ofclassical&Fuzzy	set,Representationoffuzzyse	ts,fuzzymeasure,	cardinalityofafuzzyset,α-
cuts,normal	ised fuzzyset,heighte	ofafuzzyset,Basicsettheory	operationsonfuzz	yset,Algebraicoperationson
fuzzyset,Lo	gicaloperationsonfuzzyse	et.Fuzzy	relations,operat	ionsonfuzzyrelations,Fuzzy
Cartesianpre	oductandcomposition,equ	iivalence		
relation bina	arvrelationonfuzzysets pr	operties Featuresofmembershi	infunction	Fuzzification Membership

C .: 1	
function shap	es, assignmentofmembershipfunctiontofuzzy variables, evaluation of membershipfunction
TT :: 2	
Unit – 2	FuzzyLogic andFuzzyrulebased system
Tautologies, C	ontradiction, equivalence, logical proofs, fuzzy logic,
	asoning.introduction, Natural language, Designoffuzzymembership function, designof
predicates,rule	e-basedsystem, formation of controlrules
Unit – 3	Fuzzy tocrispconversion,Fuzzymodeland controlsystems
Defuzzificatio	ntechniques,Lambdacuts,defuzzificationmethods-
	mparisonandevaluationofdefuzzificationmethodsFuzzy models, structured fuzzymodels, stability
analysis	of fuzzy model
basedcontrols	ystem, casestudies (classification of equivalence relations, fuzzy classification, fuzzy pattern recognitio
	dpatternrecognition)
Unit – 4	Fundamentals of Genetic algorithm and Genetic modeling
	CreationofOff springs, WorkingPrinciple.Encoding, Fitness Function, Reproduction.
	erators, CrossOver, InversionandDeletion, MutationOperator, Bit-wiseOperator, bit-
	sedinGA, generationalcycle,convergenceofGenetic Algorithm.Application, Multi-Level
	Differences and Similarities between GA and Other traditional Method.
Unit – 5	Fuzzylogic controlled genetic algorithms, advanced optimization techniques,
Softaamputin	Application offuzzylogic andgenetic algorithms. gtools,Problem description of optimum design, Fuzzy constrains,Illustrations,GAinFuzzyLogic
	ign,Fuzzylogiccontroller,FLC- GAbasedstructuralOptimization.Identification of dynamic system
	with G.A, familiarizationofF.L.&G.AToolboxofMATLAB.BasicconceptofAntcolony
	articleswarmoptimization, Tabu searchoptimizationmethod, difference between
	eastTWOapplicationsofFuzzy logicandGeneticAlgorithmsindetailaretobe taught.
Text Books	11 7 5 5
1. Neura	ll Networks, Fuzzy Logic and Genetic Algorithms Synthesis and Application by S.
Rajaseka	aran , G.A.VijayalakshmiPai.PHI2003.
2. Fuzz	yLogic with Engineeringapplications byTimothyJ. Ross.Wiley,2005
3. Neur	al NetworkDesign:MartinT Hagon,HowardBDemuthMarkBeale,Thomsonlearning2005.
Reference Boo	oks:

Course Code	Course Title	Course Type		Co	ntact F	Iours			Credit
EEN074040	COMPUTER AIDED POWER SYSTEM ANALYSIS	Theory	L	3	Т	0	Р	0	3
Pre-requisite	: None.								
Course Assessmen	nt Methods:	40 marks internal exam	ination &	60 mar	ks exte	ernal	examin	ation	
Syllabus Version :	1								

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Objectives:

- 1. This course introduces the computational aspects of the power system analysis. The thrust of this course is description of the computer algorithms for analysis of any general power transmission system.
- 2. Starting with load flow analysis, which is essentially the backbone of any power system analysis tool, this course further deals with computer algorithms for contingence analysis, state estimation and phase domain fault analysis method of any general power transmission system.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Remember proper mathematical models for analysis.
- 2. Conclude methodologies of load flow studies for the power network.
- 3. Apply contingency Analysis.
- 4. Analyze power system studies.
- 5. Short circuit analysis using Z bus.

r T * 4		1
∪nıt	_	1

Review of modeling of power system components and formulation of YBUS matrix. Basic power flow equations and Gauss-Seidel load flow method. Newton-Raphson load flow in polar co-ordinate. Newton-Raphson load flow in rectangular co-ordinate and introduction to Fast Decoupled load flow method. Fast Decoupled load flow method and AC-DC load flow method. Sparsity and optimal ordering methods. LU decomposition and contingence analysis. Line outage sensitivity factor and method of least square. Method of least square (contd..) and Introduction to AC state estimation. AC state estimation (contd..) and test for bad data detection. Formulation of YBUS matrix of three phase unbalanced system. Fault analysis in phase domain.

Text Books

- 1. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", Tata McGraw-Hill Education, 2003.2.
- 2. J. J. Grainger and W. D. Stevension, Jr., "Power System Analysis", McGraw-Hill International Edition, 1994.3. T.K.
- 3. Nagsarkar and M.S. Sukhija, "Power System Analysis", Oxford University Press, 2016.

Reference Books:

Course Code	Course Title	ourse Title Course Type Contact Hours Cre									
EEN074060	DIGITAL IMAGE PROCESSING	Theory	L	3	Т	0	P	0	3		
Pre-requisite	:NILL										
Course Assessmen	nt Methods:	40 marks internal exam	ination &	60 mar	ks exte	ernal e	examin	ation			
Syllabus Version	1										

Course Objectives:

- 1. To define the scope of the field that we call image processing.
- 2. To give a historical perspective of the origins of this field.
- 3. To give an idea of the state of the art in image processing by examining some of the principal areas in which it is applied.
- 4. To discuss briefly the principal approaches used in digital image processing.
- 5. To give an overview of the components contained in a typical, general-purpose image processing system.
- 6. To provide direction to the books and other literature where image processing work normally is

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

re	no	rt	e	đ.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. The objective of this course is to introduce basic concepts and methodologies for digital image processing.
- 2. Cover the basic theory and algorithms that are widely used in digital image processing.
- 3. Expose students to current technologies and issues that are specific to image processing systems.
- 4. Develop hands-on experience using computers to process images.

5. Familia	arize with MATLAB Image Processing Toolbox.
Unit – 1	Introduction and Elements of digital image processing:
DIP Fundament	tals, Steps of DI Processing System.
	on, storage, processing, communication, display.
Convolution an	d correlation, sampling, FFT algorithm, the inverse FFT.
Unit – 2	Some basic mathematical concepts and image enhancement
Neighbors of a	pixels, connectivity, labeling of connected components.
	tensity transformation, histogram processing, image subtraction, image averaging.
Background, sn	noothing filters, sharpening filters
Unit – 3	Image compression models:
Low pass filteri	ng, high pass filtering, homomorphic filtering.
	oder and decoder, the channel encoder and decoder
Unit – 4	Error free and Lossy compression
Variable length	coding, bit plane coding, lossless predictive coding.
	e coding, transform coding, image compression standards
Unit – 5	Image segmentation:
	Line detection, Curve detection, Detection of discontinuities, edge linking and boundary ction, thresholding, region orientated segmentation, recognition and interpretation.
Text Books	
1. Rafael C. Go	nzalez, Richard E. Woods "Digital Image Processing.
Reference Book	KS:

Course Code	Course Title	(Course	Contact Hours					Credi	
			Type							t
EEN074120 POWERELECTRONICSFORRENEWAR			Theory	L	3	T	0	P	0	3
ENERGY TECHNOLOGIES										
Pre-requisite	:Basic knowledge of power systems, of	computer	r and							
	bleenerg	gysystem	s.							
			rks inte	rnal	exa	ımin	atio	n &	60	marks

			external examination
Syllabus Vers	ion:	1	
renewable e	npletion of tl nergy. They		able to design DC-DC converter forcontrolling the C-DC-AC or AC-AC converter forcontrolling of MATLAB.
		After completion of this course, th	
		ngofdc-dcconverter forrenewable	
	_	opcontrolsystemwhichmainlyfoc	
			tionofdc-dcconventionalconverter
	openandclose		an divinition attento aireann d'Conventant
		rsystemsandgridconnected.	nodulationstrategiesandConverters
			uctorswitcheswithexperimental validations.
Unit – 1	Introduction	nto convertersfor renewableene	rgysystems
	back and pusl	h-pull converter circuits, half brid	operation and waveforms in CCM and DCM. ge, full bridgeconverters.Resonant DC-
Unit – 2	Converte		
PWM,closed	loopcontrol,fe	edforwardandcurrentmodecontro	.Drivercircuits:unipolar,bipolarandisolated drives.
Unit – 3	Simula	ation of DC-DC converterswith	closeloopcontrol
			verters: Overview, three phaseconverters, rectifier
andbipolar	switching sc	cheme, sine wave PWM,space	rol: PWMinverter modulation strategies, unipolar e vector modulation, multi-level inverter -
		n,improvement in harmonics.	
Unit – 4	Invert	er with different modulation str	ategies
Convertersing strategies.	standalonepov	versystems,Grid connectedinverte	rs.Simulationofinverterwithdifferentmodulation
Unit – 5	Dynan	nic characteristics ofpower sem	conductor switches
losses.Snubbe Snubberimple	ers:turn- offan		OSFET,IGBT— switchingtrajectoryand n: inductorandtransformerdesign.Simulation: rimentsinabove modules.
Text Books			
P.Ro 2007	bbins,"Power		onsandDesign",Third Edition,John Wiley&Sons,
		erElectronics:EssentialsandApplicovic,andDragan"FundamentalsofI	ations", WileyIndia, 2009. owerElectronics", Kluweracademicpublishers, 2001.
Reference Bo	oks:		

Course	Course Title Cour Contact Hours Cre										Cre	
Code		se							dit			
Code												dit
					Type							
EEN07410	COMPU	COMPUTATIONALINTELLIGENCEFORPOWER Theo L 3 T 0 P										3
0	APPLICATIONS ry											
Pre-requisit												
Course Asse	Course Assessment Methods: 40 marks internal examination & 60 marks externa											ternal
examination												
Syllabus Version: 1												
Course Obj	ectives :											
1. Th	ecourseaddres	ses	saboutFuzzylogiccor	ncepts.Algebraic andlogicop	erations	onfi	ızzy	sets				
				and rule-based system. Defu								
				cation methods. It is of interest	est to un	ders	stan	d ho	w tl	ne fi	ızzy	y sets
			riousapplications.	olicationsbasedonneural netw	vork							
				s its working principle and a		on I	Diff	eren	ce			
			een GAandother trac		ррпсан	J11. 1	<i>J</i> 1111	CICII	cc			
5. Lea	arningvarious	арр	olicationbasedonindi	vidualandhybridtechniques.								
	, ,		-	is course, the students shall	be able	to:						
			zzyLogicandsettheor	•								
	•			nddefuzzificationwithapplica	ations							
			onceptandapplication									
	-		onceptandapplication oplicationsinPower S	nsonGeneticAlgorithm								
3. Un	derstandingth	еар	opneationsin Power S	system								
Unit – 1	Fuzzy sets ,F	uzz	zyrelationMembers	shipfunctions,Fuzzy Logica	and Fuz	zyr	ule	base	edsy	ste	m	
Introduction	n to Comput	atio	onalIntelligence, In	telligence machines,Compt	ıtational	in	telli	geno	e r	ara	digi	ms,
				Systems, Rule-based experts								
				ılesandfuzzyinference, Fuzz	yexperts	syste	ems	,Cas	e st	udy	: fu	zzy
_	oller for washi	_		TI . 11 .								
Unit – 2	Neurai Netv	vor	k, Supervised and	Un- supervised learning.								
					ialneuro							
	nitectures,lear				rvisedle				lne	wo	rks:	multi-
				ntneural networks,time-delay rningneuralnetworks:self-	yneural i	netv	vork	S				
				etworks,Deepneuralnetwork	sandlear	nin	or a	lgor	ithn	ıs.C	ase	study:
anomalydet		uui	ar oubistanction in	otworks, Deepheurumetwork	sanaroar		5 "	1501		10.0	asc	staay.
Unit – 3	Fundament	als	sof Geneticalgorith	m andGeneticmodeling								
Evolutionar	v computatio	n.C	Chromosomes, fitnes	s functions, and selectionme	chanism	ıs.cı	oss	over				
				ategies,probabilisticreasonir								
Unit – 4	HybridNet	woı	rk									
HybridIntel	ligentSystems	s, N	Neuralexpertsystems,	Neuro-fuzzysystems,Evolut	tionaryn	eura	lne	twor	ks,			
Unit – 5	Application	IS										
Case study	l and Simulatio	n c	of artificial intelligen	nce, fuzzy evolutionaryalgor	ithms in	pov	ver	syste	em a	app]	licat	tions

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Text Books	Text	Bool	ks
------------	------	------	----

- 1. TimothyJ Ross, "FuzzyLogicwithEngineeringApplications", WileyIndiaPrivateLimited, 2010.
- 2. Laurene Fausett, "Fundamentalsofneural Network, Architecture, Algorithms, and Applications", Pearson Education, 2002.
- 3. John Yenand Reza Langari, "Fuzzylogic, Intelligence controland Information", Pearson Education, 2003

Reference Books:

Course Code	Course Title	Course Title Course Type Contact Hours							Credit
EEN074140	Heat and Mass Transfer	Theory	L	3	T	0	P	0	3
Pre-requisite	:NILL								
Course Assessme	nt Methods: 4	10 marks internal exam	nination &	60 mar	ks ext	ernal e	examin	ation	
Syllabus Version	: 1								
Course Objective	s:								
Course Outcomes	s (COs): After com	pletion of this course,	the studer	nts shall	be abl	e to:			
1.									
2.									
3.									

Unit – 1 Introduction

5.

Typical heat transfer situations, Modes of heat transfer, Introduction to laws, some heat transfer parameters. Conservation equations for mass, momentum and energy.

Unit – 2 Conduction

Fourier's law and thermal conductivity, Differential equation of heat conduction, boundary conditions and initial conditions, Simple one dimensional steady state situations – plane wall, cylinder, sphere (simple and complex situations), concept of thermal resistance, concept of U, critical radius. variable thermal conductivity. Special one dimensional steady state situations – heat generation, pin fins. Two dimensional steady state situations. Transient conduction Lumped capacitance model One dimensional transient problems – analytical solutions One dimensional Heisler charts Product solutions. Numerical methods in conduction Steady state one dimensional and two dimensional problems One dimensional transient problems – Explicit and implicit.

Unit – 3 Radiation

Basic ideas, spectrum, basic definitions, Laws of radiation, black body radiation, Planck's law, Stefan Boltzman law, Wien's Displacement law, Lambert cosine law, Kirchhoff's law and gray surface approximation, Radiation exchange between black surfaces, shape factor, Radiation exchange between gray surfaces – Radiosity-Irradiation method Parallel plates, Enclosures (non-participating gas), Gas radiation.

Unit – 4 Forced Convection

Concepts of fluid mechanics, Differential equation of heat convection, Laminar flow heat transfer in circular pipe – constant heat flux and constant wall temperature, thermal entrance region, Turbulent flow heat transfer in circular pipe, pipes of other cross sections, Heat transfer in laminar flow and turbulent flow over a flat

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

plate, Reynolds	analogy, Flow across a cylinder and sphere, flow across banks of tubes, impinging jets.
	tion: Introduction, governing equations, Vertical plate - Pohlhausen solution, horizontal
cylinder, horizon	ntal plate, enclosed spaces. Effect of turbulence on convective heat transfer.
Unit – 5	Heat Exchangers
Types of heat	exchangers, LMTD approach - parallel, counter-flow, multi-pass and cross flow heat
exchanger, NTU	approach – parallel, counter flow, shell and tube, cross flow heat exchanger.
Unit – 6	Condensation and Boiling
Dimansianless	parameters, boiling modes, correlations, Forced convection boiling, laminar film condensation
	te, turbulent film condensation.
on a vertical pla	e, turbulent mini condensation.
Unit – 7	Mass Transfer
A 1 14	
	n heat and mass transfer, mass diffusion, Fick's law of diffusion, boundary conditions, steady
	through a wall, transient mass diffusion, mass convection, limitations of heat and mass
transfer analogy	
Text Books	
Text Books:	
1. S. P. Su	ıkhatme, Heat Transfer, 4th Edition, University Press, 2005.
	cropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th Edition, John Wiley
	ns, 2004.
_	hoshdastidar, Heat Transfer, Oxford, 2004.
Reference Book	

Course Code Course Title			Course		C	ontact	Hou	rs		Credit
			Type							
EEN074160	EEN074160 FUNDAMENTALSOFNA				3	T	0	P	0	3
NO-ELECTRONICS										
Pre-requisite	gelectr	onicsdevices	and pri	incipl	es.					
Course Assessment I	Methods:	40	marks interi	nal ex	amina	ation	& 6	0 ma	arks	external
			nination							
Syllabus Version:	•									
Course Objectives:	1 6 1	. 1	1 77 1		1			. 1		. •

To learn fundamentals of nano-electronics and nanotechnology. To learn application andrecent advancement in the field of nano-electronics and nanotechnology. To be aware with all Nano materials and their characteristics.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Analyzedifferentnanostructuredmaterials
- 2. Characterizedifferentnanomaterialsusingcharacterizationtechnique
- 3. Applynano-electronicstechnologiestosolveengineeringproblems
- 4. Designnano-electronics systemusing quantum dots and quantum wires
- 5. Applymicroscopytoolsfornano-electronics

Unit – 1	Nanostructurematerial

	o (i) Carbon Nano tubes(CNTs) - Single-walled Carbon Nanotubes(SWCNTs), Multi-
	Nanotubes(MWCNTs),BNNanotubes,(ii)CarbonNanofibres(CNFs), s,(iv)Nanocomposites, (v)Nanocones(vi)Nanorods.
` '	
Unit – 2	Characterization ofnanomaterial
nningTunnellin 2)ElectronMicr Characterization physicalcharact	oscopy-ScanningElectronMicroscopy(SEM),TransmissionElectronMicroscopy(TEM) - and samplepreparationtechniques.3)Thermoerization:DifferentialScanningCalorimetry(DSC)andThermoGravimetricAnalysis(TGA).4)Elect
capacitorsetc	ration:ElectricalconductivityandDielectricpropertiesofmaterials.,Nanofilledresinforcastinsulator,
Unit – 3	Nanoelectronics technology
	Transcreed onless teenhology
ElectronDevice	ndamentalconcepts,technologicalevolution.BasicNanoelectronicTechnologies-Single s,QuantumMechanicalTunnelDevices,SpinNanoelectronics (Spintronics), electronics,QuantumComputing
Unit – 4	Nanoelectronicssystem
QuantumDotsar	ndQuantumWires(determinationofresistance,chargeconcentration,chargemobility),
FabricationMet	hodsandTechniquesforNanoelectronics
Unit – 5	Microscopy
	ols for Nanoelectronics, Microelectro mechanical Systems (MEMS) and Micron hanical Systems (MOEMS) Applications.
Text Books	
1. 8	S.Saito, A. Zettl-CarbonNanotubes: QuantumCylindersofGraphene
2. І	DanielMinoli-NanotechnologyApplicationstoTelecommunicationsandNetworking
3. I	Badih El-Kareh- Silicon Devices and Process Integration: Deep Submicron
	and Nano-ScaleTechnologies
4. I	Researchpapers/conferenceproceedings.
Reference Book	KS:

Course Code	Course Title	Course Type		Contact Hour			et Hours			
EEN074180	Energy Efficient Building	Efficient							3	
Pre-requisite :NILL										
Course Assessme	nt Methods: 4	0 marks internal exam	ination &	60 mar	ks exte	ernal e	examin	ation		
Syllabus Version	: 1									
Course Objective										
Course Outcomes	(COs): After com	pletion of this course,	the studen	ts shall	be abl	e to:				
1.										
2.										
3.										
4.										
5.										

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit - 1

Introduction

Climate and shelter ,Historic buildings, Modern architecture , Examples from different climate zones, Thermal comfort ,Solar geometry and shading, Heating and cooling loads, Sustainable sites and landscaping , enhancing ecosystems, building envelop, selection of green materials - products and practices Energy estimates and site planning, Integrative Modelling methods and building simulation.

Unit - 2

Principles of Energy conscious building design

Principles of Energy conscious building design, Energy conservation in buildings, Day lighting, Water heating and photovoltaic systems, Advances in thermal insulation, Heat gain/loss through building components, Solar architecture. Energy Efficient Landscape Design, Modification of microclimate through landscape elements for energy conservation

Unit - 3

Passive Solar Heating

Illustrative passive buildings, Passive solar heating, Direct gain, Thermal storage wall, Sunspace, Convective air loop, Passive cooling, Ventilation, Radiation, Evaporation and Dehumidification, Mass effect, Design guidelines. Cooling and heating concepts, Passive concepts appropriate for the various climatic zones in, India. Classification of building materials based on energy intensity.

Unit – 4

Energy Conservation in Building

Site protection planning - health and safety planning - construction and demolition waste management - reducing the footprint of construction operations - maximizing the value of building commissioning in HVAC System, Computer packages for thermal design of buildings and performance prediction, Monitoring and instrumentation of passive buildings, Control systems for energy efficient buildings, Integration of emerging technologies - Intelligent building design principles.lighting and non mechanical Systems - costs and benefits relevance to LEED / IGBC standards

Unit – 5

Economics of Energy Efficient Buildings

B Energy Storageusiness case for high-performance energy efficient buildings, the economics of energy efficient buildings, benefits, managing initial costs – cost barrier in project management – long- term environment benefits. Energy Management of Buildings and Energy Audit of Buildings. Energy management matrix monitoring and targeting, Energy survey and Energy Audit of buildings. Calculation of energy inputs in buildings. Energy Audit reports of buildings. Energy rating of buildings.

Text Books

- 1. J.A. Clarke, Energy Simulation in Building Design (2e) Butterworth 2001.
- 2. J.K. Nayak and J.A. Prajapati Hadbook on Energy Consious Buildings, Solar Energy Control MNES, 2006.
- 3. Energy Conservation Building Codes 2006; Bereau of Energy Efficiency.
- 4. J.R. Williams, Passive Solar Heating, Ann Arbar Science, 1983.
- 5. Green building guidelines: Meeting the demand for low-energy, resource-efficient homes. Washington, D.C.: Sustainable Buildings Industry Council, 2004.

Reference Books:

- 1. Jerry Yudelson, Green building A to Z, Understanding the buildings, 2008.5.
- 2. R.W. Jones, J.D. Balcomb, C.E. Kosiewiez, G.S. Lazarus, R.D. McFarland and W.O.
- 3. Wray, Passive Solar Design Hanbook, Vol.3, Report of U.S. Department of Energy (DOE/CS-0127/3), 1982.
- M.S. Sodha, N.K., Bansal, P.K. Bansal, A.Kumar and M.A.S. Malik. Solar Passive Building, Science and Design, Pergamon Press, 1986. J.L. Threlkeld, Thermal Environmental Engineering, Prentice Hall, 1970

Course Code	Course Title	Course Type	Contact Hours						Credit	
EEN074200	Waste to Energy	Theory	L	3	T	0	P	0	3	
Pre-requisite	:NILL	,								
Course Assessment Methods: 40 marks internal examination & 60 marks external examination										
Syllabus Version	Syllabus Version: 1									
Course Objective	Course Objectives :									
Course Outcomes	(COs): After comp	letion of this course, th	e students	shall b	e able t	ю:				
2.										
3. 4.										
5.										
Unit – 1	Solid waste									
Definitions - Sou	irces, Types, Comp	positions, Properties of	f Solid Wa	aste - N	Munici	pal So	olid Wa	aste -]	Physical,	
Chemical and Bi Municipal Waste.	ological Property	- Collection - Transfer	Stations	– Wast	e Min	imizat	ion an	d Recy	cling of	
_										
Unit – 2	Waste Treatment									
		g - Incineration - Furn							al Waste	
Incineration - Env	vironmental Impacts	s - Measures of Mitigat	e Environn	nental I	Effects	due to	Incine	eration		
Unit – 3	Hazardous Waste	Management								
		zardous Waste - Source								
		trol - Minimization and ground Storage Tanks (us Was	te Sites -	
Unit – 4	Hazardous Waste		onsu detre	, m, mst	ination	<u> </u>	osurc.			
Definition & Ide	entification of Haz	ardous Waste - Source	es and N	ature o	of Haz	ardou	s Wast	e - In	npact on	
Environment - Ha	zardous Waste Con	trol - Minimization and	ł Recycling	g - Asse	essmen	t of H	azardo			
Unit – 5	Energy Generatio	ground Storage Tanks (on from Waste	Construction	on, Insta	allation	ı & CI	osure			
	31									
		ources of Energy Gene ypes of Biogas Plant								
Generation - Gas	ification - Types of	f Gasifiers - Briquettin	g - Industr	ial App	olicatio	ns of	Gasifie	ers - U	tilization	
and Advantages of Text Books	f Briquetting - Env	ironment Benefits of Bi	ochemical	and Th	nermoc	hemic	al Con	versior	<u>t</u>	
Text Books										
		erts, Energy from Was	ste - An]	Evaluat	ion of	Con	version	Tech	nologies,	
	rier, Applied Scienc Kanti L., Basics of	e, London, 1985 f Solid & Hazardous W	aste Manas	gement	Techno	ology.	Printic	e Hall.	2000	
3. Mano	oj Datta, Waste Disp	oosal in Engineered Lar	ndfills, Nar	osa Pul	blishin	g Hou	se, 199	7		
 Rich, Gerald et.al., Hazardous Waste Management Technology, Podvan Publishers, 1987 Bhide AD., Sundaresan BB, Solid Waste Management in Developing Countries, INSDOC New 										
	, 1983.	,	8			5	,			
Reference Books:										
	20000									

Course Title

Course Code

झारखण्डकेन्द्रीय विश्वविद्यालय CENTRAL UNIVERSITY OF JHARKHAND

Contact Hours

Credit

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

SEMESTER IX

Course Type

EEN075030	MACHINE LEARNING	Theory	L	3	T	0	P	0	3	
Pre-requisite		nny programming langu	ıage					1		
Course Assessme	ent Methods: 4	0 marks internal exam	ination & 6	0 mark	s exteri	nal ex	aminat	ion		
Syllabus Version	Syllabus Version: 1									
Course Objectives :										
1. To introduce the student with the broad outlines of machine learning.										
2. To familiarize students with various techniques of machine learning used to classify, categorize and interpret data.										
	Course Outcomes (COs): After completion of this course, the students shall be able to:									
		achine learning, the ge	neral step v	wise pro	ocess to) macl	hinelea	rning a	nd	
	methods of learning									
		n gain using decision tro based learning, linear re		ogistic	ragragg	ion or	ad supr	vort		
_		work model and its adv	-	-	_		iu supp	ort		
		nt types of clustering te		on as ac	op rear	mig				
II:4 1	Internal of the Trans									
Unit – 1	Introduction, Type	esof learning								
	lations, Scope, Prob	lems, Approaches of A	I, Applicat	ions, Ty	pes of	learni	ng and	types	of error,	
k-fold validation										
Unit – 2	Intelligent Agents,	, Decision tree								
		tree, Calculation of ga	in, entropy	, Class	ificatio	n of c	lata ba	sed on	decision	
tree, Prunning-pr	e-prunning, post pru	anning								
Unit – 3	Linearand logistic	c learning, support ve	ctor mach	ines						
Regression mode	el, regression line,	single and multiple va	riable, err	or, LM	S algoi	rithm.	Logisti	c regre	ession &	
		function used. Types	s of funct	ion, su	pport	vector	rs, fun	ctional	margin,	
geometrical marg	gin,optimization fun Neural network a									
OIII – 4	Neurai network a	nd Deep learning								
Analogy between	n biological and ar	tificial neural network	, structure,	Mc cu	ılloch a	and p	itts mo	del, Pe	rceptron	
		lve different logic gate	s Backpro	pagatio	n algor	ithm,	imple	mentatio	on, deep	
learning structure Unit – 5		1.61	1							
Unit – 3	Knearest neignbo	ur and Clustering tec	nnıque							
KNN, voronoi di	agram, lazy algorith	ım, learning algorithm.	Different (Clusteri	ng tech	nique	s			
Text Books										
Reference Books	:									
L										

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Code	Course Title	Course Type	Contact Hours						Credit
EEN075050	REAL TIME EMBEDDED SYSTEMS	Theory	L	3	Т	0	Р	0	3
Pre-requisite	:NILL								
Course Assessmen	nt Methods:	40 marks internal exam	nation & 6	60 mark	s exteri	nal ex	aminat	ion	

Syllabus Version: 1

Course Objectives:

This course explores the processes of real time embedded systems to provide the basic foundation in embedded system.

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. To understand the concept of embedded system, microcontroller, different components of microcontroller and their interactions.
- Get familiarized with programming environment to develop embedded solutions. CO3 Understand the key concepts of embedded systems such as I/O, timers, interrupts and interaction with peripheral devices.
- 3. Evaluate the implications of design choices on real time system implementation
- 4. Apply real-time methodology to multiprocessor and distributed systems

Unit – 1 Introduction of Embedded Stystems

General features of Embedded System, basic components, processors technologies, I.C. technologies, software tools.

Unit – 2 Concept of Memory and communication protocol

SRAM, DRAM, memory hierarchy and cache, cache mapping, writing, advanced RAM. Power & display devices, Basic networking, communication & protocol concept, parallel & serial communication buses, inter communication and networking.

Unit – 3 **Operating system**

Device Drivers, Multiple processes, Task, Threads, Introduction to Operating System, Time-sharing systems, Real time Systems.

Unit – 4 Real-Time Operating Systems

System structure, Kernel, management & scheduling.

Unit – 5 **Embedded system designing**

Typical embedded system designing, software programming and system testing, Selected application case studies from areas such as PowerElectronics System.

Text Books

- 1. Raj kamal- Embedded Systems Tata McGraw-Hill,2004
- 2. F. Vahid, T. Givargis- Embedded System Design-John Wiley &Sons, Inc. 2002
- 3. Goldsmith Sylvia, —A Practical Guide to Real-Time Systems Developmentl, Prentice Hall.

Reference Books:

Course Title

ELECTRICAL

MACHINE

Course Code

EEN075070

झारखण्डकेन्द्रीय विश्वविद्यालय CENTRAL UNIVERSITY OF JHARKHAND

L

Contact Hours

Credit

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

1. David Simon, —An Embedded Software Primer, Addison Wesley, 1999

Course Type

Theory

2. Philip A.Laplante, —Real Time System Design and Analysisl, IEEE CS Press

	DESIGN								
Pre-requisite	: Fundamenta	l of Machines							
Course Assessmen	nt Methods:	40 marks internal e	xamination & 6	60 mark	s extern	al exan	nination		
Syllabus Version :	1								
Course Objectives	s: [']								
		s of machine design.							
	-	C machine design.							
		C machine design.							
		mpletion of this cour	se, the students	shall b	e able to):			
1. Knowledge on 1									
2. Knowledge on a3. Design concept									
4. Knowledge of c		iiiic							
5. Design concept									
o. Besign concept	or modification								
Unit – 1	Laws in Machir	e Design							
Dringing I gave on	d Mathods in El	ectrical Machine Des	ian Electrome	anatio	Dringin	lac Win	dings of		
		oles, Salient- Pole Wi				ies, wiii	idiligs of		
Unit – 2	Design of Magn	etic circuit.							
Design of Magnet Transformers, DC		Gap, Core Length, M	agnetic Materia	als of a	Rotating	g Machi	ine. Desig	gn of	
		design of rotating r	naahinas						
Omt – 3	introduction to	design of rotating i	nacinites						
Main Dimensions	of a Rotating M	achine- Mechanical,	Electrical and I	Magnet	ic Loada	ability, <i>I</i>	Air Gap		
Unit – 4	Design of rotat	ng machines							
Design Process an	d Properties of	Rotating Electrical M	achines- Async	hronou	s Motor	Synchi,	ronous		
Unit – 5	Insulation desig	yn							
Machine, Insulation	on of Electrical 1	Machines - Dimensio	ning of an Insu	lation.T	`hermal	Design	aspects.		
						2 101511	шарччая		
Text Books									
	sign of Rotating n Wiley & Sons	Electrical Machine, Ltd.	s, Juha Pyrhor	nen, Taj	pani Jol	kinen, V	Valeria H	rabovo	ova,
	•	cal Machine Design,	A.K.Sawhnev.	Dhanpa	ıt Rai.				
Reference Books:	2	2 co.g.i,		P*					
			· · · · · · · · · · · · · · · · · · ·						

Course Code	Course Title	Course Type	Contact Hours						Credit
EEN075090	ADVANCED	Theory	L	3	Т	0	P	0	3
	MICROPROCESSO:								
	AND EMBEDDED SYSTEMS								
Pre-requisite : Basics of computer knowledge.									ı
Course Assessme	ent Methods:	40 marks internal exam	nination &	& 60 ma	arks ex	terna	l exam	ination	1
Syllabus Version	: 1								
Course Objective	es:								
1. To teach	the basic of 8086 mice	coprocessor architecture	÷.						
2. To provi	de knowledge of famil	y of higher x86 family of	of process	sors.					
		ced microprocessor AR							
		ion of this course, the s		nall be a	able to	:			
		are and family of proces rs and its utilization in e		eveten	10				
Unit – 1	and the ARM processo.	is and its utilization in c	moedaec	system	15				
		isters & Memory organi							ıls,
		X mode, Instruction sets nttools & simple assem							
	ge program developme	illuoois & simple assem	ory progr	ammini	g, DO	5 Tulic	tion c	a115.	
Unit – 2									
		rupt vector table. Macr							
SRAM. Introduc	tion to higher bit proce	essors, 80286, 80386,80	486, Pent	ium Ra	spberr	y Pi U	JNIT-I	I Basic	;
Unit – 3									
Embedded system	n, overview of main co	omponents and software	tools in	designi	ng of a	n em	bedded	l syster	n
	,	1		8	8			J	
Unit – 4									
		naries of ARM proces							
	ifferent type of CPU b	ual Memory and Memouses	ory Mana	gemeni	Umi,	Powe	r Awa	re arci	ntecture.
Unit – 5									
Fundamentals	f Embedded Operatir	ng Systems, Schedulin	g Policie	s Rec	ource	Man	ageme	nt Ne	tworked
		n, Programming with di						111, 110	tworked
Text Books									
		ripherals, architecture, praw Hill Publishing Co			d inter	facing	g, Ajoy	Kuma	r Ray &
	 Douglas V. Hall, "Microprocessors and Interfacing - Programming and Hardware", Tata McGraw-Hil Publishing Company Ltd., New Delhi, India 								raw-Hill
	<u>-</u>	Tata McGraw-Hill, 200	4						
Reference Books									
	•	System Design-John Wi	•		2002				
2. VHDL Pro	gramming by example.	Douglas L. Perry- McG	Graw-Hil	l					

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Code	Course Title	Course Type	Contact Hours					Credit	
EEN075110	PROCESS CONTROL & INSTRUMENTATION		L	3	T	0	P	0	3
Pre-requisite	:NILL		•						•
Course Assessment Methods ·		0 marks internal exar	nination &	2 60 m	arks e	vterns	l evan	ninatio	n

Syllabus Version:

Course Objectives:

- 1. To provide an understanding of process.
- 2. To learn about the basic elements or building blocks of feed forward and feedback control system.
- 3. To be able to analyze, design and evaluate PID controller.
- 4. To provide knowledge about different final control elements

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Learn the basic principles & importance of process control in industrial process plants
- 2. Apply the use of block diagrams & the mathematical basis for the design of control systems
- 3. Learn the basics design and tune process (PID) controllers
- 4. Construct the importance and application of good instrumentation for the efficient design of process control loops for process engineering plants
- 5. Learn the basic of final control elements

Unit – 1 The basic process control loop

Different blocks in it, how is it different from _servo' Loop.

Process modelling, process equations – their limitations - general approach.

Effect of disturbances and variation in set point in process control.

Offset - why does it appear, analysis, how is it eliminated.

Process Reaction Curves, Controllability – using: deviation reduction factors, Gain Bandwidth product, State controllability, Self-regulation.

Unit – 2 Schemes and analysis

On-off control, Time proportional control, PI and PID Control – Ziegler – Nichols method, Cohen - Coon method and 3-C.Method of parameter adjustment

Unit – 3 **Electric Drives**

Energy Saving with adjustable Speed Drives, AC and DC Adjustable Speed Drives, Stepper motor Drives, Servo Drives.

Unit – 4 Final Control Element:

Types of Actuators and Control valves, Safety and solenoid valves, Pneumatic Actuators.

Electrical Actuators, Valvecharacteristics, Cv values, Valve sizing, Valve selection, cavitation, linearization, positioners

Unit – 5 **P-I and I-P converters**

Elements of a digital control loop. Development of a control algorithm, direct digital control. Control of a specific plant like: Drum Level Control.

Text Books

- 1. D. Patranabis, Principles of Process Control, TMH, New Delhi, 2nd Ed.
- 2. D. P. Eckman, Automatic Process control, John Wiley, New York
- 3. B. G. Liptak, Instrument Engineers Handbook, Chilton Book Co., Philadelphia

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

4. P. Harriott, Process control, Mc Graw Hill, New York.									
Reference E	Books:								

Course Code	Course Title	Course Type		Credit					
EEN075130	DIGITAL SYSTEM DESIGN	Theory	L	3	Т	0	P	0	3
Pre-requisite	: NILL								
Course Assessment Methods: 40 marks internal exam			ination & 6	0 mark	s exteri	nal ex	aminat	ion	
Syllabus Version	: 1								

Course Objectives:

- 1. To impart the basic knowledge about the analog and digital circuits.
- 2. To understand the designing procedure of various asynchronous and synchronous digital system.
- 3. To know about various ADC and DAC.
- 4. To understand basics of computer aided deigning

Course Outcomes (COs): After completion of this course, the students shall be able to:

- 1. Ability to identify basic requirements for a design application and propose a cost effective solution.
- 2. The ability to identify and prevent various hazards and timing problems in a digital design.
- 3. To develop skill to build, and troubleshoot digital circuits
- 4. Explain basic concept of VLSI technology
- 5. Establish the transformations of analog techniques in the digital world

Unit – 1 Review of Sequential sequential finite state machines

Concept of memory, general model of Sequential machine and classifications, output decoder, design of counters and registers, code sequence detectors. Sequential code generators.

Unit – 2 Analysis and Design of Asynchronous sequential Finite state Machines

Need for Asynchronous circuits, Analysis, Cycles and Races, Hazards, Analysis and Design *of* Asynchronous sequential Finite state Machines.

Unit – 3 Introduction to system controller design and Linked state machines

System controller state specification (MDS diagram), timing and frequency considerations, synchronizing systems, state assignments, implementation using ROM, PAL, PLA, Concept of linked state machines.

Unit – 4 **Introduction to VLSI**

Benefits of integration, criteria for evaluating implementation styles, introduction to computer-aided-design.

Unit – 5 Introduction to Modern Digital System Implementation options, Interfacing Units and Methods of A/D conversions

Mask Programmable gate array, cell based integrated circuits, Sampling, aliasing effect, antialiasing filters, sample and hold circuits, DACs, resistive ladder networks, (Weighted R, R-2R Networks), characteristics of DACs, simultaneous conversion, counter method, continuous A/D dual slope A/D successive approximation technique, characteristics of ADCs, Data acquisition systems

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Text Books

- 1. Malvino and Leach-Digital Principles and Applications- MGH. 1986.
- 2. Thomas L. Floyd Digital Fundamentals, 10th Edition, Pearson

Reference Books:

- 1. S. Salivahanan& S. Arivazhagan Degital Circuits and Design, 4th Edition, Vikas Publishing House (P) Ltd.
- 2. A. Anand Kumar Fundamental of Digital Circuits (Ed.4)-PHI, 2016.

Signature of the Head of Department with seal